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Time integration methods for compressible flow
Thesis Universiteit Twente, Enschede.
- With ref. - With summary in Dutch.
ISBN 90-36513243

Copyright c©1999 by R. van Buuren
Faculty of Mathematical Sciences
University of Twente
P.O. Box 217
7500 AE Enschede
The Netherlands



Contents

1 Introduction 1

1.1 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Numerical example . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Relevant types of flow for implicit methods . . . . . . . . . 7
1.2.3 Efficiency of implicit schemes . . . . . . . . . . . . . . . . . 9

1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Numerical methods 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Numerical requirements . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Spatial Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Inviscid terms . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Viscous terms . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Explicit time integration . . . . . . . . . . . . . . . . . . . 26
2.4.2 Implicit time integration . . . . . . . . . . . . . . . . . . . 27
2.4.3 TVD-property . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Linear solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Basic iterative methods . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Krylov methods . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.1 Two-grid model . . . . . . . . . . . . . . . . . . . . . . . . 35

3 The shock tube 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Governing equations and problem definition . . . . . . . . . . . . 39
3.3 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Approximation of the Jacobi matrix . . . . . . . . . . . . . . . . 41

3.4.1 Numerical approximation of the flux Jacobi matrix . . . . 42

v



vi CONTENTS

3.4.2 Numerical flux Jacobi matrix . . . . . . . . . . . . . . . . . 43
3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Numerical solution . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Comparison of linear solvers . . . . . . . . . . . . . . . . . 47

3.6 Entropy production . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.1 Entropy satisfying solutions . . . . . . . . . . . . . . . . . 51
3.6.2 Application to the Euler equations . . . . . . . . . . . . . . 52

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Inviscid flow around an airfoil 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Governing equations and explicit numerical method . . . . . . . . 61

4.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 Explicit time integration . . . . . . . . . . . . . . . . . . . 63
4.2.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 63

4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Implicit method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Numerical results for the implicit scheme . . . . . . . . . . . . . . 68

4.5.1 Grid refinement . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.2 Linear Stability Theory . . . . . . . . . . . . . . . . . . . . 74

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Acceleration techniques for steady flow computations 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Multigrid acceleration . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Domain decomposition . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Shock boundary-layer interaction flow 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Governing equations and explicit numerical method . . . . . . . . 97

6.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . 99
6.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 99
6.2.4 Explicit time integration . . . . . . . . . . . . . . . . . . . 101

6.3 Explicit numerical reference results . . . . . . . . . . . . . . . . . 102
6.4 Implicit time integration method . . . . . . . . . . . . . . . . . . 104

6.4.1 Time integration and implicit approximation of the flux . . 106



CONTENTS vii

6.4.2 Implicit treatment of boundary conditions . . . . . . . . . 108
6.4.3 Linear solver . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Implicit time integration results . . . . . . . . . . . . . . . . . . . 110
6.5.1 Error bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5.2 Comparison with explicit results . . . . . . . . . . . . . . . 113

6.6 Dynamical behavior for large time steps . . . . . . . . . . . . . . 117
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Analysis of multigrid performance for unsteady flow 123

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Identification of test case . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Multigrid applied to unsteady flow . . . . . . . . . . . . . . . . . 127

7.3.1 Damping characteristics flat plate . . . . . . . . . . . . . . 128
7.3.2 Changing the smoother . . . . . . . . . . . . . . . . . . . . 132

7.4 Model equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Partially implicit time integration schemes 139

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 Mixed multi-stage schemes . . . . . . . . . . . . . . . . . . . . . . 141

8.2.1 Second order multi-stage schemes . . . . . . . . . . . . . . 141
8.3 Steady-state-consistency . . . . . . . . . . . . . . . . . . . . . . . 143

8.3.1 Model equation . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.2 Steady-state-consistent schemes . . . . . . . . . . . . . . . 145

8.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.4.1 M-stable schemes . . . . . . . . . . . . . . . . . . . . . . . 146
8.4.2 Stability of steady-state-consistent schemes . . . . . . . . . 148

8.5 Numerical results and implementation . . . . . . . . . . . . . . . 151
8.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 151
8.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 152
8.5.3 Convergence characteristics . . . . . . . . . . . . . . . . . . 155
8.5.4 High aspect ratio . . . . . . . . . . . . . . . . . . . . . . . 158

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9 A dynamical time step criterion 163

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.2 Proper orthogonal decomposition . . . . . . . . . . . . . . . . . . 164
9.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10 Conclusions 173



viii CONTENTS

Bibliography 175

Summary 184

Samenvatting 187

Dankwoord 190

Over de schrijver 191



Chapter 1

Introduction

I am an old man now, and when I die and go to heaven there are two matters
on which I hope for enlightenment. One is quantum electrodynamics, and the
other is the turbulent motion of fluids. And about the former I am rather
optimistic 1.

1.1 Turbulence

In both nature and technological applications the flow of fluids plays an im-
portant role. Consider e.g. an airplane: important properties as lift and drag
are completely determined by the flow of air around the airplane. As a sec-
ond example the mixing of fuel and oxygen in an internal combustion engine
determines much of the efficiency of the engine and the emission of gases into
the environment. In our bodies blood runs through our veins, and we breath
air in and out of our lungs. Or consider the motion of gases in the atmo-
sphere and the flow of water in lakes and seas and their relevance to weather
prediction [30, 44, 64]. In all these cases turbulence plays an important role
and depending on the situation turbulence has beneficial or detrimental ef-
fects. Obviously, a detailed investigation of the dominant flow mechanisms is
essential in order to understand these systems or to optimize certain specific
properties.

Roughly speaking there are two characteristic types of flow, i.e. laminar
flow and turbulent flow. Laminar flow displays smooth and gradual changes in
time and space, whereas turbulent flow behaves chaotic with rapid changes in
time and space. An every-day example of these two types of flow can be found
if one observes the flow from a water tap [64]. If the tap is opened slightly the

1Reportedly said by Sir Horace Lamb in an address to the British Association for the
Advancement of Physics in 1932 [64].

1



2 CHAPTER 1

water comes out in a smooth current, characterizing laminar flow. However,
if the tap is fully opened the water flow becomes more vivid, characterizing
turbulent flow.

In general a flow of a Newtonian fluid is mathematically described by the
Navier-Stokes equations which are a set of coupled nonlinear partial differential
equations combining the physical laws of conservation of mass, momentum and
energy (see Eq. 6-1). By non-dimensionalising the Navier-Stokes equations it
appears that a flow of a calorically perfect gas can be compactly characterized
by four dimensionless numbers: (γ, Pr,Re,M). The adiabatic gas constant γ
and the Prandtl number, Pr, depend on the type of fluid. For many fluids
these are experimentally determined which leaves the Mach number, M , and
the Reynolds number, Re still to be specified. The Mach number, which
is the ratio of the speed of the fluid and the speed of sound, is related to
compressibility, i.e. density variations, of the fluid. For low Mach number
the fluid is nearly incompressible (e.g. constant density) like e.g. water in
about all applications, while for high Mach number flow of e.g. gases typical
compressible phenomena such as shock waves can occur. The Reynolds number
is the ratio of inertia and viscous effects and is related to the two characteristic
types of flow described earlier. For low Reynolds number the flow is laminar
whereas it becomes turbulent if a critical (flow dependent) Reynolds number
is exceeded.

In this century a lot of effort has been put into understanding turbulence
and the phenomena which trigger turbulence. Next to theoretical develop-
ments and experiments, computer capacity has increased enormously in the
past two decades which enables simulations of flows of increasing complexity.
However, on the whole only a few substantial advances appear to have been
made. For a short and comprehensible review we refer to [30]. Here we only
focus on some aspects related to computational effort associated with flow
simulations and for more details we refer to Refs. [30, 44, 85] and references
therein. One of the assumptions on turbulence is that turbulent flows are
hierarchical and involve a broad spectrum of so-called eddies. The largest
eddies are produced by the driving forces of the flow, which in turn break
into smaller eddies and this process continues until the resulting eddies reach
a size on which molecular viscosity converts the eddy motion into heat. The
property of this energy cascade from large to small eddies is predicted by Kol-
mogorov [51] and is expected to hold universally. In the Kolmogorov theory
of turbulent flow the ratio of the lengths of the largest and smallest eddies is
of the order Re3/4 which in three dimensions results in a number of degrees of
freedom in the order of Re9/4.

With this prediction of the number of degrees of freedom it is possible
to roughly estimate the computational cost for simulating turbulent flow. If
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Figure 1-1: Surface triangulation of a generic fighter configuration;
Technology demonstration of the FASTFLO CFD system (courtesy of
NLR, Amsterdam).
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a turbulent flow is to be simulated with a computer the continuous space is
approximated by a discrete grid on which the flow quantities are determined.
The grid size has to be fine enough to resolve all relevant eddies. This means
that on the order of Re9/4 grid points are required. If we assume that the
amount of work is proportional to the number of grid points this means that
the required CPU (central processor unit) time is also of the same order. For
turbulent flows which typically have large Reynolds numbers the problem is
obvious. Although flows with simple geometries such as turbulent flow over a
flat plate can be simulated with increasingly high Reynolds number, see e.g.
[71], the actual simulation of flows over complicated geometries in all its details
is still far away. In Ref. [64] a striking example of the computational costs for
a complete aircraft in flight conditions is presented. It is estimated that for an
aircraft cruising at 250 meters per second at an altitude of 10.000 meters the
Reynolds number is about 108 and together with the enormous complexity of
the geometry of the entire airplane about 1016 grid points are required. With
a computer that performs 1012 floating points operations per second, which
did not yet exist at the time (1997), it would take several thousand years to
compute only one second of flight time. A typical application of practical
relevance is illustrated in figure 1.1 [17].

Figure 1-2: The relation between DNS, LES and RaNS with respect to
complexity of flow, required resolution and computer power.

This example shows that a DNS (direct numerical simulation) of a flow in
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a complex geometry described by the Navier-Stokes equations is not possible
in the near future. Therefore, simplifications of the Navier-Stokes equations
aimed at reducing the number of degrees of freedom such as RaNS (Reynolds
averaged Navier-Stokes) and LES (large-eddy simulation) are commonly used
(see e.g. Refs. [93]). In both methods the Navier-Stokes equations are filtered
with respect to time (RaNS) or space (LES) such that the corresponding
small structures in time or space do not have to be resolved by the numerical
method. In this way coarser grids can be used which greatly reduces the
required CPU time. However, the influence of these small structures, such as
in the energy cascade described above, has to be modelled in order to close the
Navier-Stokes equations. This closure is generally referred to as “turbulence
modelling” in case of the RaNS equations and “sub-grid modelling” for LES.
Although many models have been proposed for numerous types of flow and
applications thus far no model has been developed which is generally valid.
The relation between DNS, RaNS and LES with respect to computer power
and required resolution (number of grid points) is represented in figure 1.1
(see also [81]). The computational hierarchy between DNS, LES and RaNS is
clearly depicted on the dashed line which symbolically represents the present
computational power. Simple flows with respect to Reynolds number and
geometry can be resolved by a DNS whereas for more complicated flows a
LES or RaNS approximation is required. However, the data obtained from a
DNS of a simple flow can be used to validate the sub-grid model of a LES of
the same flow. In turn this “approved” model can be incorporated into LES
of a more complicated flow for which DNS is no longer feasible. A similar
validation approach can be used for LES and the RaNS equations.

1.2 Time integration

Thus far we have only focused on the physical description of a flow by means
of the full or filtered Navier-Stokes equations. We have argued that one way
of enabling or accelerating a simulation is the modelling of small scale struc-
tures. Obviously computational methods play a crucial role as well. The
increased use of CFD (computational fluid dynamics) and its application to
more complicated flows impose severe demands on both computer hardware
and numerical methods. Not only do the numerical methods have to resolve
the physical phenomena occurring in a flow as accurately as possible, their
performance on modern computer platforms, like e.g. massively parallel com-
puters, is equally important. In order to identify the numerical aspects we
write the Navier-Stokes equations in conservation form given by

∂q

∂t
+∇ · f = 0 (1-1)
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where q is the unknown vector quantity and f denotes the flux vector. For
more specific details see (6-1). In a numerical simulation both the temporal
and spatial derivatives in (1-1) have to be discretised. A commonly used
approach is the so-called method of lines which separates the temporal from
the spatial discretisation. In this thesis we focus on the time integration of
the Navier-Stokes equations. Assume that the spatial discretisation of ∇ · f is
performed on an appropriate grid, then (1-1) becomes a set of coupled ordinary
differential equation in time given by

dqi

dt
+ Fi(q) = 0 (1-2)

where the index i represents the grid point, qi is the vector quantity in grid
point i and Fi represents the numerical approximation of ∇ · f in grid point i.

Basically two types of time integration schemes can be applied to (1-2), i.e.
explicit and implicit schemes. The former uses only information from the past
to advance the solution q in time whereas the latter also requires information
of the solution q which still has to be determined. To further clarify this
point we present the Euler forward and backward schemes which are typical
examples of the explicit and implicit approach respectively and are given by

qn+1
i = qn

i −∆tFi(qn)
qn+1
i = qn

i −∆tFi(qn+1) (1-3)

where the superscript n denotes the time level and ∆t the time step. Clearly,
with the Euler forward scheme the solution qn+1 is easily computed if qn is
known. In comparison, for the Euler backward scheme the computation of
qn+1 is more complicated and computationally intensive since F is a nonlinear
function of q which means that a set of coupled nonlinear equations has to
be solved. At first hand the explicit schemes appear to have the most favor-
able properties being simple and efficient. However, the main drawback of
explicit schemes lies in the numerical stability limit on ∆t (see section 2.4.1).
If the time step during the simulation exceeds this stability limit the numerical
scheme becomes unstable and the numerical error in the solution q can be-
come unbounded. Many implicit schemes, on the other hand, in theory do not
have this stability restriction on the time step and thus the time step can be
related to the required numerical or physical accuracy alone. For applications
in which the accuracy time step is much larger than the explicit stability time
step an implicit scheme may constitute an attractive alternative. In figure 1-3
this is presented schematically. In this figure ∆tstab denotes the explicit stabil-
ity time step, ∆timp the implicit time step and ∆tacc the accuracy time. The
accuracy time step represents a time level which gives rise to an acceptably
accurate prediction of the time dependent solution. Ideally, the implicit time
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stabt acct0 timp

Figure 1-3: A case for which an implicit scheme may be more efficient
than an explicit scheme.

step can be taken equal to the accuracy time step. The central theme in this
thesis is related to ∆tacc and the key question that we try to answer is: What
is a suitable criterion to dynamically determine the accuracy time step during
a simulation in order to efficiently integrate the solution in time?

1.2.1 Numerical example

To illustrate the fact that an explicit stability time step may be too restrictive
with respect to required accuracy we solve the linear convection equation with
the two schemes in (1-3) for a specific choice of the initial and boundary
conditions which is given by






ut + ux = 0
u(x, 0) = sin(x/100) x ∈ [0, 1]
u(0, t) = sin(−t/100) t ≥ 0

(1-4)

where the subscripts denote the corresponding derivatives. The analytical so-
lution to this problem is u(x, t) = sin((x− t)/100), which has a characteristic
time scale in the order of 100. The spatial domain is discretised with a uni-
form grid with grid size h = 0.01 and for the spatial discretisation we use a
first order upwind scheme (see section 2.3). For the Euler forward scheme the
numerical stability restriction yields ∆t ≤ h. The numerical simulations are
performed with ∆t = 0.01 and ∆t = 1 for the Euler forward and backward
scheme respectively. The solutions u(1/2, t) obtained with both time integra-
tion methods are presented as a function of time over a long time interval in
figure 1-4. Visually, both solutions are indistinguishable. Although this is a
very simple example it clearly shows that an explicit stability time step may
be far too restrictive with respect to the required temporal accuracy if the
characteristic time scale is much larger.

1.2.2 Relevant types of flow for implicit methods

Before we go into more detail concerning implicit methods let us first discuss
the types of flow for which an implicit time integration method could be an



8 CHAPTER 1

0 20 40 60 80 100 120 140 160 180 200

1

0.8

0.6

0.4

0.2

0

0.2

time

u(
1/

2,
t)

Figure 1-4: The solution u(1/2, t) obtained with the Euler forward
scheme with ∆t = 0.01 and the Euler backward scheme with ∆t = 1.

attractive alternative to explicit methods. First of all implicit methods can be
used efficiently for steady flow problems. For these flows a time integration
scheme is commonly used to advance the solution towards the steady state.
The time in this case has no physical significance and is often denoted by
pseudo time. Therefore, the accuracy of the time integration scheme has no
influence on the accuracy with which the steady state solution is obtained.
If an explicit scheme is used to advance the solution in pseudo time, the
time step is still restricted for numerical stability reasons which means that
an unnecessary small time step is used. So, for steady flows the benefits of
implicit schemes are obvious and the application of these schemes may lead to
a considerable speed up as will be shown in chapter 4.

For time dependent flows the break even point between explicit and implicit
schemes is less transparent. In case of fully developed turbulent flows small
scales in both time and space are present. The length and time scales of the
smallest eddies scale as Re−3/4 and Re−1/2 [85] which appears to leave room
for an implicit time integration scheme for large Reynolds number. However,
it is argued in Ref. [9] that the smallest eddies are advected by the most
energetic eddies. This dimensional argument yields an accuracy time scale
similar to the CFL criterion which indicates that the explicit stability time
step is also close to the accuracy time step and thus implicit schemes appear
not efficient for turbulent flows.

The numerical example in (1-4) reveals that in case the physical time scale
is large in comparison to the ratio of the grid size and local speed explicit
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methods may not be the most efficient methods since the stability time step
is related to the grid size (see section 2.4.1). Take for instance the turbulent
viscous flow over an oscillating airfoil within the RaNS framework. Due to
the Reynolds averaging the small time scales related to the turbulence are
modelled leaving roughly the time scale related to the pitching frequency. In
order to resolve the boundary layer a very fine grid is required near the airfoil.
By rule of thumb one can argue that for accuracy reasons at least in the order
of 50 to 100 time steps are required per period of the pitching frequency.
Thus for high frequencies small time steps are required and explicit methods
at first hand appear to be the best choice. However, for low frequencies the
accuracy time step is considerably larger and the explicit stability time step,
which is determined by the grid cell sizes near the solid boundary, may be
far too restrictive. In this case implicit schemes have already proven to be an
attractive alternative.

On the whole no general criterion can be given to decide whether an im-
plicit scheme may be more efficient than an explicit scheme but some heuristic
arguments can be given. For a DNS or LES at sufficiently small Reynolds
number and in a simple geometry with a high aspect ratio of the grid the
stability time step can be too restrictive. Also, for flows modelled with the
RaNS equations with relatively large time scales implicit methods may be
more efficient.

1.2.3 Efficiency of implicit schemes

Now that we have some feeling for which types of flow implicit schemes may be
useful the following question arises: When is an implicit scheme more efficient
than an explicit scheme? If we denote the amount of work units per time step
of the explicit and implicit scheme by Wexp and Wimp respectively it easily
follows that

∆timp ≥
Wimp

Wexp
∆tstab (1-5)

For a specific numerical scheme the amount of work Wexp can be easily com-
puted. However, the amount of work for an implicit scheme depends on several
parameters which in general are not known and therefore Wimp cannot be de-
termined a priori. In the following we elaborate somewhat more on these
parameters and discuss the computational complexity of implicit schemes us-
ing the Euler backward scheme as a typical example.

Consider the Euler backward scheme in (1-3) and assume we solve the
resulting nonlinear set of equations with a Newton method. Then we obtain
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the following iterative scheme:
(

I +∆t
∂F

∂q
(qk)

)
∆qk

i = −∆t Fi(qk) (1-6)

where k denotes the iteration level, ∂F/∂q is a symbolic representation of
the Jacobi matrix and ∆qk

i = qk+1
i − qk

i . If the iteration process converges,
∆q∞ = 0 and the solution at the next time level yields qn+1 = q∞. The
numerical process in (1-6) consists of a linear and a nonlinear part. The
linear part concerns the linear system arising within every iteration level of
the nonlinear system which we denote by A∆q = b where A in general is
a sparse matrix. Depending on the properties of A such as e.g. diagonal
dominance etc., an appropriate choice for an efficient linear solver can be
made (see section 2.5). Next to the choice of the linear solver, which in most
practical applications is an iterative scheme, we will show in this thesis that
the accuracy with which the linear system is solved has a significant impact
on the overall efficiency of the total method. The accuracy with which the
linear system is solved can be defined by

||A∆qp − b||
||b|| < εlin (1-7)

where εlin is the required accuracy, the superscript p denotes the iteration level
within the linear solution process and || · || denotes an appropriate norm.

The nonlinear part concerns the construction of the flux Jacobi matrix and
the accuracy with which the nonlinear system is solved every time step i.e.

||F (qk)|| < εnonlin (1-8)

where εnonlin is the required accuracy. In general the numerical techniques
used to discretize the spatial derivatives for the flows discussed in this thesis
use a local stencil, which means that the flux Fi in a grid point depends only
on values of flow quantities in a neighborhood of the grid point i. As a result
the flux Jacobi matrix is a sparse matrix as mentioned above. Consider e.g.
a second order central spatial discretisation in one-dimension of a first order
partial differential equation. Then Fi = Fi(qi−1, qi, qi+1) and the resulting Ja-
cobi matrix is a tridiagonal matrix. For higher order schemes in two or three
dimensions larger stencils are required and the determination, storage and in-
version of the Jacobi matrix becomes too expensive. This can be circumvented
by an approximation of the flux Jacobi matrix using e.g. a lower order method
which requires a smaller stencil. If the resulting system (1-6) converges this
extra approximation has no effect on the accuracy of the solution qn+1 which
is determined only by the order of the discretisation method used for the flux
F . However, an approximation of the flux Jacobi matrix can influence the
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required number of iterations to obtain a desired accuracy εnonlin. By and
large we conclude that the amount of work Wimp is determined by the order
of the approximation of the Jacobi matrix, the type of linear solver and the
required accuracies εlin and εnonlin.

1.3 Outline of this thesis

The issues concerning the implicit time integration of the time dependent
flows described in section 1.2.2 are the primary focus in this thesis. The key
question that we would like to answer is: How can we dynamically determine
the accuracy time step ∆tacc? With such a criterion it would be possible
to efficiently integrate the solution in time by switching between an explicit
and implicit scheme during a simulation. However, before developing such a
criterion the efficiency of implicit schemes has to be studied first (see (1-5)).

In general it is hard to give estimates of the parameters mentioned in sec-
tion 1.2.3 that influence the amount of work for an implicit method. Also,
the type of discretisation required to resolve the physical phenomena may
have a significant influence on the performance of an implicit scheme. Flows
containing shock waves e.g. impose certain requirements on the numerical
schemes. Without a proper numerical scheme shock waves are not captured
correctly or numerical oscillations in the solution near shock waves are intro-
duced. For more details see section 2.2. Higher order schemes suitable for
shock capturing such as e.g. the MUSCL scheme [56] form a critical test case
for our implicit schemes since these MUSCL type schemes add little numerical
dissipation and incorporate a limiting function to avoid numerical oscillations
(see section 2.3.1) which both influence the convergence characteristics of the
nonlinear process. Therefore, in this thesis we simulate flows containing shock
waves such as the one dimensional shock tube problem in chapter 3, the steady
inviscid transonic flow around an airfoil in chapters 4 and 5 and the supersonic
viscous flow over a flat plate in chapters 6 to 9.

The use of explicit schemes is widespread in the CFD community. The
convergence towards the steady state for steady flows using explicit schemes is
significantly improved by acceleration techniques such as local time stepping
and multigrid [13, 38]. Also, the performance of explicit schemes on parallel
platforms is excellent due to the locality of the data. Next to the key question
how to dynamically determine the accuracy time step for unsteady flows we
want to study the performance of the above mentioned acceleration techniques
using implicit methods. Summarizing, the main research aims in this thesis
can be formulated as follows:

1. What is a suitable implicit numerical scheme for steady and unsteady
compressible flows containing shock waves?
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2. The convergence towards a steady state of the transonic flow around
an airfoil using an explicit time integration method as a smoother can
be accelerated by the multigrid technique [15]. Does the application of
multigrid yield convergence acceleration if an implicit scheme is used as
a smoother?

3. Explicit schemes perform well on parallel platforms due to the locality of
the required data. However, for implicit schemes the data locality is lost.
Therefore, the question arises whether the implicit scheme mentioned in
the first item is suitable for efficient parallel execution?

4. Are the multigrid results obtained for steady flows transferable to un-
steady flows in general?

5. What is a suitable criterion to determine the accuracy time step for
unsteady flow simulations?

6. What is the relation between ∆t, εlin and εnonlin in view of overall effi-
ciency?

If the latter two points are answered for a specific unsteady flow the behavior
of ∆t over a certain sampling period is known as well as the convergence
characteristics of the implicit scheme. Possible ideas on the criterion for the
dynamic determination of the accuracy time step can subsequently be tested
by their ability to yield the above mentioned temporal behavior. In this way
we come to the key question of this thesis:

7. What is a suitable criterion to dynamically determine the accuracy time
step during a simulation in order to efficiently integrate the solution in
time?

The contents of this thesis is as follows. In chapter 2 we discuss the numeri-
cal techniques which are used throughout this work. We show in chapter 3 that
a basic linear solver suffices for the present flow applications. Additionally, we
provide further indication of the relation between TVD (total variation dimin-
ishing) schemes and entropy satisfying solutions. The superior performance of
an implicit scheme compared to an explicit scheme for a steady inviscid tran-
sonic flow around an airfoil is shown in chapter 4. With the implicit scheme
a machine accurate steady state solution is obtained whereas for the explicit
scheme the convergence stalls. The difference between these two solutions is
studied and appears to be caused by a physical instability in the wake region
which is not captured by the implicit scheme. In chapter 5 we study the per-
formance of multigrid using the implicit scheme as a smoother applied to the
steady flow in chapter 4. In general explicit methods for compressible flows
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are highly parallelizable due to the locality of the data. By means of a do-
main decomposition we show in chapter 5 that the present implicit scheme is
equally suitable for parallelization. In chapter 6 we apply an implicit scheme
to simulate an unsteady shock boundary-layer flow. A criterion is developed in
order to determine the accuracy time step for several types of flow quantities.
Convergence problems occur for large time steps which appear to be related to
the complex dynamical behavior of the numerical scheme. A multigrid anal-
ysis in chapter 7 reveals that no multigrid acceleration can be obtained for
the present shock boundary-layer flow and more generally for unsteady flow
in which the temporal terms are dominant in the smoothing operator. For the
shock boundary-layer flow there appears to be a difference in the smoothing
properties of the numerical scheme in x- and y-direction. Therefore, in chapter
8 we develop a new class of partially implicit time integration schemes which
treat the fluxes in x-direction explicitly and the fluxes in y-direction implicitly.
In chapter 9 some preliminary results of a dynamical time step criterion are
presented. Finally, the conclusions are summarized in chapter 10.



14 CHAPTER 1



Chapter 2

Numerical methods

2.1 Introduction

The focus in this thesis lies on the use and study of implicit methods for
the time integration in CFD. Although a variety of different problems con-
cerning numerical methods are discussed in other chapters, several aspects of
the numerical methods are more general. In this chapter we outline the nu-
merical methods used in this thesis. Additionally some properties of implicit
time integration related to monotonicity preservation are presented. Due to
the specific nature of the flow problems to be simulated in the next chapters
shocks occur in the flow. These phenomena set certain demands on the spatial
discretisation. In section 2.2 a brief description of the required properties of
the numerical methods will be given. In section 2.3 the spatial discretisation
used throughout this thesis will be described. Section 2.4.1 contains the de-
scription of the explicit time integration scheme which is used as a reference
method in this thesis. In section 2.4.2 implicit time integration schemes are
described. The application of implicit schemes results in a large set of coupled
nonlinear algebraic equations which are solved with iterative schemes such as
e.g. a Newton or approximate Newton method. During every iteration the
solution to a linear system of equations has be to determined or approximated
and two typical families of linear solution methods will be discussed in section
2.5. In section 2.6 the multigrid convergence acceleration technique is out-
lined. The description of boundary conditions and the numerical treatment of
the boundary conditions will not be given in this chapter. Due to the diver-
sity of the boundary conditions used for the different types of flows that are
simulated in this thesis we postpone the description of specific details to the
corresponding chapters.

15
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2.2 Numerical requirements

The equations governing general inviscid or viscous flow are the Euler equa-
tions or Navier-Stokes equations respectively, which will be described in more
detail in chapter 4 and chapter 6 in two dimensions. In general these equations
can be written as a set of evolution equations in conservation form:

∂q

∂t
+∇ · f(q,∇q) = 0 (2-1)

where q represents the vector of unknown quantities, f represents the flux vec-
tor and the ∇· operator and ∇ operator denote the multi-dimensional equiv-
alent of the divergence and gradient operators respectively. For the Navier-
Stokes equations the flux vector f can be split into a so-called inviscid and
a viscous flux [86]. Later on this splitting will be used to discretize the two
fluxes with different methods. Integration of (2-1) over an arbitrary volume,
V , in space and application of Gauss’ theorem yields

d

dt

∫

V
qdV +

∫

S
f(q,∇q) · ndS = 0 (2-2)

where S is the boundary of V and n is the outward unit normal on this
surface. It is clear that the conserved quantity

∫
V qdV changes only due to

the flux through the surface S. For numerical calculations the continuous
equation (2-2) needs to be discretized. For illustration purposes we assume
that equation (2-2) represents a one-dimensional differential equation. The
volume V is now an interval that is divided into N sub-intervals through the
introduction of N + 1 grid points xj with j = 0, . . . ,N and xj < xj+1. The
temporal and spatial discretisation of (2-2) can be performed separately which
results in a semi-discretisation

dqj

dt
+ Fj(q) = 0 (2-3)

where qj denotes the solution or solution vector in grid point xj and Fj rep-
resents the corresponding numerical approximation of the flux. A numerical
scheme which retains the conservation property in (2-2) will have the general
form [57]

dqj

dt
+ [F (qj−p, qj−p+1, . . . , qj+k)− F (qj−p−1, qj−p, . . . , qj+k−1)] = 0 (2-4)

where the term between square brackets represents the numerical flux Fj .



Numerical methods 17

Conservative methods

A problem arises with numerical methods when discontinuities such as e.g.
shocks are present in the solution. Analytically this means that there does
not exist a solution which satisfies equation (2-1) in the classical sense but
only equation (2-2) is satisfied. Such a solution is called a weak solution of
equation (2-1) [105]. To illustrate some of the difficulties that may arise if
discontinuities occur, a simple numerical experiment can be performed as in
[56]. Consider the one-dimensional inviscid Burgers equation given by

∂q

∂t
+

∂f(q)
∂x

= 0 (2-5)

with f(q) = 1
2q2. For continuously differentiable solutions, the Burgers equa-

tion can be written as
∂q

∂t
+ q

∂q

∂x
= 0 (2-6)

For q ≥ 0 we consider the following two first-order upwind discretisations on
a uniform grid with grid-spacing ∆x and time step ∆t given by

qn+1
j = qn

j − α∆n
j− 1

2
f (2-7)

and

qn+1
j = qn

j − αqn
j ∆

n
j− 1

2
q (2-8)

with α = ∆t/∆x, ∆n
j− 1

2
f = f(qn

j ) − f(qn
j−1) and ∆n

j− 1
2
q = qn

j − qn
j−1 and the

superscript n denotes the time level at tn. As an initial condition we take

q(x) =






1 if 0 ≤ x < 1
2

3
4 if x = 1

2
1
2 if 1

2 < x ≤ 1
(2-9)

Furthermore ∆x = 1/100 and the time step ∆t is chosen such that the shock
wave moves exactly one mesh width every two time steps. In figure 2-1 the
solution q after 50 time steps is plotted in computational domain for the two
discretisations in equations (2-7) and (2-8). Clearly, the shock wave does not
propagate with the same shock speed for the two discretisations. From liter-
ature [56] it is known that the solution corresponding to the discretisation in
equation (2-7), i.e. Godunov’s scheme [36], is the proper one. It is straightfor-
ward to verify that the first discretisation is conservative as defined in equation
(2-4) and the second discretisation is not conservative. The theorem of Lax-
Wendroff [55] states that if the numerical solution converges as the grid is
refined a proper weak solution of the underlying differential equation (2-2) is
obtained if a conservative scheme is used.
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Figure 2-1: The solution q after 50 time steps in computational space.
The +’s indicate the solution obtained with (2-7) and the ◦’s indicate
the solution obtained with (2-8).

Numerical oscillations

Another problem related to the numerical treatment of shock waves is the
occurrence of spurious numerical oscillations near the shock if an improper
numerical scheme is used. Consider e.g. the second order conservative Fromm
scheme [31] applied to (2-5) which results in the following discretisation

qn+1
j = qn

j − α∆j− 1
2
f

−α

4

(
(1− αqj+ 1

2
)∆j+ 1

2
f − (1− αqj− 3

2
)∆j− 3

2
f
) (2-10)

with qj+ 1
2

= (qj+1 + qj)/2. In figure 2-2 the exact solution to (2-5) with ini-
tial condition (2-9) is compared to the numerical solution obtained with the
schemes in equations (2-7) and (2-10). Although Fromm’s scheme is attractive
for smooth solutions due to its conservation property and second-order accu-
racy in time and space, it leads to unwanted overshoots and undershoots near
shocks. Godunov’s scheme on the other hand displays the proper monotonic
behavior but is only of first order. The essential difference between these two
methods can be traced back to the fact that Godunov’s scheme is a total-
variation diminishing (TVD) scheme in the sense of Harten [39] which means
that

TV (qn+1) ≤ TV (qn) (2-11)

with TV (qn) =
∑

j |qn
j+1 − qn

j |. In Ref. [39] it has been proven that TVD-
schemes are monotonicity preserving which ensures that no numerical oscilla-
tions will occur near the shock.
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Figure 2-2: The solution q after 50 time steps. The ◦’s indicate the
solution obtained with (2-7), the +’s indicate the solution obtained with
(2-10) and the solid line represents the exact solution with initial condi-
tion (2-9).

The previous examples show that even for the simple one-dimensional
Burgers equation the numerical schemes should possess certain features in
order to correctly capture a shock. Although Godunov’s scheme is TVD it
is only of first order in time and space. For computations which demand
a higher accuracy such as e.g. the viscous flow around an airfoil where an
accurate estimation of e.g. the drag coefficient is desirable, one would like
higher order schemes with the TVD property. Godunov proved [36] that it is
not possible to construct a linear monotonicity preserving difference scheme
which is of higher order. A lot of work has been performed on the construc-
tion of higher order monotonicity preserving schemes which necessarily have
to be nonlinear. Examples of such schemes which are commonly used are ENO
(Essentially Non-Oscillatory) schemes [40] and MUSCL (Monotonic Upwind
Scheme for Conservation Laws) schemes [56]. Both types of methods incor-
porate a specific interpolation technique on the state vector which limits the
gradient of the solution between adjacent cells (see section 2.3.1). In Ref. [15]
no fully converged steady state for the two-dimensional inviscid Burgers equa-
tion was obtained with a typical ENO-scheme and hence the MUSCL scheme,
which did not exhibit this problem, is incorporated in this thesis. Details of
the MUSCL scheme will be described in the next section.
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2.3 Spatial Discretisation

In this section we will define the numerical methods used for the spatial dis-
cretisations. The Navier-Stokes equations contain first and second order spa-
tial derivatives which correspond to inviscid and viscous terms respectively. In
the following sections the discretisation of these derivatives will be discussed
by considering a scalar one dimensional differential equation. The extension
of the discretisation to a system of equations or more dimensions is straight-
forward and will be outlined in the corresponding chapters.

2.3.1 Inviscid terms

As described in the previous section special properties of the numerical scheme
are required if shocks are present in inviscid flow or if large gradients in the
solution arise in case of viscous flow. The construction of a conservative nu-
merical scheme is quite natural if one starts with the integral formulation of the
conservation law applied to a certain control volume as in equation (2-2). This
type of method is generally referred to as a finite volume method. Consider a
grid with points x0, . . . , xN such that x0 and xN lie on the boundary and de-
fine the control volume as the intervals [xj− 1

2
, xj+ 1

2
] with xj+ 1

2
= (xj+xj+1)/2.

For any control volume the integral formulation yields

d

dt

∫ x
j+1

2

x
j− 1

2

qdx + f(q(xj+ 1
2
, t))− f(q(xj− 1

2
, t)) = 0 (2-12)

where the flux function f contains only the inviscid flux. The integral can be
approximated by qjΩj, with the conventional choice Ωj = xj+ 1

2
− xj− 1

2
. In

this way the spatial discretisation can be written as

Ωj
dqj

dt
+ hj+ 1

2
− hj− 1

2
= 0 (2-13)

where hj+ 1
2

is a numerical approximation of the flux in xj+ 1
2
. Traditionally,

the discrete flux is split into two parts, the central part and the dissipative
part (see e.g. [15]), i.e.

hj+ 1
2

= cj+ 1
2
− dj+ 1

2
(2-14)

where the central part is defined as

cj+ 1
2

=
1
2

(f(qj+1) + f(qj)) . (2-15)

The difference between several types of discretisations is now determined by
the dissipative part dj+ 1

2
[15].
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Roe’s dissipation model

For accuracy and efficiency reasons we use a higher order scheme. The dis-
cretisation method we adopt is based on the first order upwind scheme of Roe
[73] which belongs to the class of approximate Riemann solvers [57]. Since
Roe’s scheme forms the basis of our spatial discretisation we first discuss this
scheme in some detail after which we elaborate on the MUSCL (Monotonic
Upwind Scheme for Conservation Laws) interpolation technique to obtain a
higher order method. One of the main features of Roe’s method is the incor-
poration of the characteristic wave velocities. Consider the general nonlinear
equation given by

∂q

∂t
+

∂f(q)
∂x

= 0. (2-16)

Application of Roe’s scheme gives:

Ωj
dqj

dt
+ a−

j+ 1
2
(qj+1 − qj) + a+

j− 1
2
(qj − qj−1) = 0 (2-17)

where aj+ 1
2

is an approximation of the characteristic wave speed f ′(q) at xj+ 1
2
,

a− = min(a, 0) and a+ = max(a, 0). Roe’s scheme can be written in the form
of equation (2-13) by defining the dissipative flux as:

dj+ 1
2

=
1
2
ψ(aj+ 1

2
)(qj+1 − qj) (2-18)

where ψ(a) = |a| which is called the numerical viscosity coefficient. The term
numerical viscosity can be clarified if we apply Roe’s scheme to the linear
advection equation,

∂q

∂t
+ a

∂q

∂x
= 0 (2-19)

where a is a real number. For an equidistant grid this results in:

dqj

dt
+

a(qj+1 − qj−1)
2∆x

= ψ(a)
qj+1 − 2qj + qj−1

2∆x
(2-20)

with ∆x = Ωj. Using Taylor expansions this can be rewritten as:

∂q

∂t
+ a

∂q

∂x
=

1
2
∆xψ(a)

∂2q

∂x2 + O
(
(∆x)2

)
(2-21)

The leading order term on the right-hand side contains the characteristic sec-
ond order spatial derivative of q with a positive sign, which is a dissipative
term. This viscous contribution arises due to the numerical discretisation
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and since ψ(a) = |a| is positive, 1
2ψ(a) is referred to as numerical viscosity

coefficient.
A priori there remain a large number of possibilities for aj+ 1

2
such as e.g.

aj+ 1
2

= 1
2(aj +aj+1). Let aj+ 1

2
be an approximation of the characteristic wave

speed. Then a Roe type linearisation exists if [73]:

1. aj+ 1
2
(q, q) = a(q),

2. aj+ 1
2
(qj, qj+1)(qj+1 − qj) = f(qj+1)− f(qj)

The first condition ensures consistency with the underlying differential equa-
tion. The second condition states that the Rankine-Hugeniot relation is obeyed
which ensures a proper treatment of shock waves. From these conditions it
follows that the approximation of the characteristic wave speed at xj+ 1

2
equals

[35]

aj+ 1
2

=






f(qj+1)− f(qj)
qj+1 − qj

if qj+1 − qj (= 0

a(qj) if qj+1 − qj = 0
(2-22)

However, it is well known that Roe’s scheme does not result in a proper phys-
ical solution if the approximation of the characteristic wave speed equals zero
[73, 86]. In this case the scheme permits an expansion shock wave as a steady
solution which is physically not correct since this corresponds to a decrease of
the total entropy. As suggested in [73] this problem can be avoided if a certain
amount of numerical dissipation is added where a sonic point occurs. Within
the present definition of the numerical viscosity coefficient ψ this can easily
be defined as

ψ(a) =
{

|a| if |a| > δ
δ if |a| ≤ δ

(2-23)

where δ is a positive parameter. The main drawback of this approach is that
a suitable value of δ depends on the flow problem.

MUSCL interpolation

Although Roe’s scheme is TVD and conservative, it is only first order accurate
in space. To arrive at a higher order monotonic upwind method we interpo-
late the state values with the MUSCL interpolation technique [56] using the
minmod-limiter. In this way the characteristic wave speed becomes a function
of these new interpolated state values which we denote by ql and qr and are
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given by:

ql = qj +
1
4

[
(1− η)Lim(∆qj− 1

2
,ω∆qj+ 1

2
) + (1 + η)Lim(∆qj+ 1

2
,ω∆qj− 1

2
)
]

(2-24)

qr = qj+1 −
1
4

[
(1− η)Lim(∆qj+ 3

2
,ω∆qj+ 1

2
) + (1 + η)Lim(∆qj+ 1

2
,ω∆qj+ 3

2
)
]

(2-25)

with ∆qj+ 1
2

= (qj+1 − qj) and the limiter is defined as

Lim(a, b) =
1
2

(sign(a) + sign(b)) min(|a|, |b|) (2-26)

The parameters η and ω must obey

−1 ≤ η ≤ 1,
1 ≤ ω ≤ 3−η

1−η
(2-27)

to ensure monotonicity [99]. For the special choice η = 1
3 the scheme is third

order accurate in smooth regions. In this thesis we will use: η = 1
3 and ω = 3

2 ,
unless stated otherwise. Note that at extrema the limiter function equals zero
and thus the scheme becomes first order accurate in space. The central part
cj+ 1

2
and the dissipative part dj+ 1

2
in (2-15) and (2-18) are evaluated with

the new interpolated state vectors ql and qr which correspond to qj and qj+1
respectively.

Properties of the limiter function

In order to illustrate the properties of the limiter function in the MUSCL
scheme we once more consider the linear convection equation in (2-19) with

a > 0. If we apply the MUSCL scheme to the convective part, a
∂q

∂x
, of the

one-dimensional convection equation (2-19) we obtain a(ql,j+ 1
2
− ql,j− 1

2
) after

some algebraic manipulations. Substitution of (2-24) gives for this term

a

∆x

[
1 +

1
2
χ(Rj)−

1
2
χ(Rj−1)

Rj−1

]
(qj − qj−1) (2-28)

with ∆x the grid size,

χ(Rj) =
1
2
[(1 − η)Lim(1,ωRj) + (1 + η)Lim(Rj ,ω)], (2-29)

and Rj =
qj+1 − qj

qj − qj−1
. In the following we will investigate for which functions

χ(R) the MUSCL scheme results in a higher order TVD scheme. Clearly, since
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a > 0, the term between brackets in (2-28) must be positive in order for the
scheme to be TVD. This results in the constraint

0 ≤ χ(R) ≤ 2R (2-30)

which gives rise to the upper bound for ω in (2-27). Second order accuracy
in space is obtained if χ(1) = 1. It is easily verified that the limiter (2-29)

2R

R

R

1

2

1 2

Figure 2-3: Region for the limiter in order to obtain a second-order TVD
method (shaded) and the asymmetric minmod limiter with parameters
ω = 3

2 and η = 1
3 (solid line).

satisfies this condition for all η and ω obeying (2-27). Moreover, Sweby [83]
shows that the limiter, χ(R), must lie between 1 and R in order to comply
with the fact that every second order scheme with the present stencil has to be
an average of the Lax-Wendroff scheme and the Beam and Warming scheme.
Together with the previous constraint (2-30) this yields the shaded region in
figure 2-3. This is the well-known second order TVD region [57] in which the
limiter must lie. The application of a time stepping scheme may result in an
additional constraint on the limiter which will be discussed in more detail in
the next section. Taylor series expansion around xj in (2-28) for the specific
choice of ω = 3

2 and η = 1
3 yields

a
∂qj

∂x
+

a

12
∂4qj

∂x4 ∆x3 (2-31)
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which shows that the truncation error is of third order in space and has a dis-
sipative nature since the truncation error consists of a fourth order derivative
with positive sign.

For a smooth part of a steady state solution, where smooth is defined
as sufficiently slowly varying on the scale of the mesh size, the quotient R
will be close to one. The lower boundary of the TVD region in figure 2-3 is
the original minmod limiter, which corresponds to the choice ω = 1 for all
η [83]. The original minmod limiter is non-differentiable only for R = 1. If
we choose ω (= 1 the limiter (2-26) becomes asymmetric in the sense that
Lim(a,ωb) (= Lim(b,ωa). We have plotted the graph of the limiter for the
specific choice of ω = 3

2 and η = 1
3 . It shows that the limiter is a smooth

linear function in a neighborhood of R = 1. This smoothness property seems
to have a positive effect on the convergence property of the numerical scheme
for the flow simulated in chapter 4.

2.3.2 Viscous terms

As was shown in the previous section we approximate the first order derivatives
with a conservative finite volume method. In the Navier-Stokes equations
also viscous terms are present which contain second order derivatives with
respect to the spatial variables. In order to obtain a second order accurate
approximation of these derivatives within a finite volume context we use the
approach as defined in [93]. Consider for instance the one-dimensional viscous
Burgers equation given by:

∂q

∂t
+ q

∂q

∂x
= ν

∂2q

∂x2 (2-32)

where ν stands for the viscosity. Integration over the control volume Vj =
[xj− 1

2
, xj+ 1

2
] of the term on the right-hand side yields

∫

Vj

∂2q

∂x2 dx =
∂q

∂x

∣∣∣j+ 1
2
− ∂q

∂x

∣∣∣j− 1
2

(2-33)

The first order derivatives on the right-hand side are approximated by intro-
ducing a second control volume e.g. Vj+ 1

2
= [xj, xj+1] for which

∂q

∂x

∣∣∣j+ 1
2
≈ 1

|Vj+ 1
2
|

∫

V
j+1

2

∂q

∂x
dx =

1
|Vj+ 1

2
|
(qj+1 − qj) (2-34)

with |Vj+ 1
2
| = xj+1 − xj. This approach results in a second order accurate

approximation of the second order derivative as can be inferred from a Taylor
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expansion. The generalization to higher dimensions is straightforward by ap-
plying Gauss’s theorem to an appropriate second control volume in order to
obtain the first order derivatives at the vertices of the original control volume
(see [93]).

2.4 Time integration

In this section we define the time integration methods that are used and ana-
lyzed in later chapters of this thesis. In the previous section we outlined the
spatial discretisation method. However, the main focus in this thesis lies on
the properties of time integration schemes and we consider the spatial dis-
cretisation as fixed. By using the method of lines we can separate the spatial
discretisation from the time integration. In this way we obtain from the general
evolution equation (2-1) a large set of coupled ordinary differential equations

dqj

dt
+ Fj(q) = 0 (2-35)

where j represents a labelling of the grid nodes, qj represents a vector of
unknown quantities in the specific grid point j, Fj stands for the numerical
flux in grid point j described in the previous section and q without a subscript
symbolically represents all the state vectors required by the numerical stencil.
The common time integration schemes can roughly be divided into two groups:
explicit and implicit schemes. Aspects and examples of both types will be
outlined in more detail in the next subsections.

2.4.1 Explicit time integration

The use of explicit time integration methods in CFD is wide-spread. The prop-
erties of these methods are quite well understood and fairly efficient schemes
have been developed with respect to damping and accuracy properties as well
as efficiency and memory usage, see e.g. [50, 52]. Also it has been shown that
explicit schemes perform very well on parallel platforms, see e.g. [33, 82]. The
main disadvantage of explicit schemes lies in the well-known fact that there
exists a numerical stability bound on the time step which depends strongly on
the grid size.

In this thesis we use an explicit time integration scheme as a reference
method. In particular we use the four stage second order compact storage
Runge-Kutta scheme defined by

q(0)
j = qn

j

q(k)
j = q(0)

j − αk∆tFj
(
q(k−1)) , (k = 1, 2, 3, 4)

qn+1
j = q(4)

j

(2-36)
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with qn
j = qj(t), qn+1

j = qj(t + ∆t) and the coefficients α1 = 1/4, α2 =
1/3, α3 = 1/2 and α4 = 1. Although there is a wide family of suitable Runge-
Kutta methods that could have been used as a useful reference method we have
chosen this Runge-Kutta scheme for its low memory overhead and favorable
stability region.

The time step ∆t is bounded for stability reasons and depends on the grid
size and the eigenvalues of the flux Jacobi matrix of the numerical flux F . For
the linear convection equation with a > 0 it can be derived with Von Neumann
stability analysis that the time step is bounded by

∆t ≤ σ∆x

a
(2-37)

where σ stands for the CFL (Courant-Friedrichs-Levy) number which depends
on the specific choice of the explicit time integration method and the spatial
discretisation. The extension to multiple dimensions and systems of equations
is straightforward and will be described in the corresponding chapters. In the
case of a steady flow the accuracy of the time stepping scheme is not important
because the time derivative vanishes when the steady state is obtained and
the quantities in each node can be advanced in time according to their own
local stability time step ∆tj. This technique is called local time stepping and a
considerable acceleration with respect to CPU-time may be obtained compared
to the case where all quantities are advanced with a fixed global stability time
step, especially on highly non-uniform grids. For time dependent problems this
acceleration technique is not possible and the quantities in each grid point have
to be advanced in time with the same time step ∆t ≤ minj ∆tj.

2.4.2 Implicit time integration

For flows where the dominant physical time scales are relatively large, the
stability time step may be much smaller than the time step necessary for
accuracy. An example of such a flow is e.g. the viscous flow around a slowly
pitching airfoil where the turbulence is modelled within the Reynolds-averaged
Navier-Stokes framework. In order to resolve the boundary layer around the
airfoil correctly very small grid cells have to be used which results in a very
small stability time step for explicit methods. It is possible to overcome this
stability restriction if one uses an implicit scheme. The difference between
implicit and explicit schemes is that the numerical flux in (2-35) is evaluated
at the new time level which explains the designation implicit since the desired
new solution is only specified as the solution to a system of equations.
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A large class of implicit schemes can be written as:

qn+1
j =

n∑

i=n−k

αiq
i
j −∆t

n+1∑

i=n−k

βiFj(qi) (2-38)

where the superscript indicates the time level and αi and βi are constants with
βn+1 (= 0. For convenience we take the time step ∆t constant. It is possible
to derive similar multi-step schemes which use a variable time step but then
the coefficients α and β become functions of the time steps. Examples of
commonly used implicit schemes are the first order Euler Backward scheme
given by

qn+1
j − qn

j +∆tFj(qn+1) = 0 (2-39)

the second order Crank-Nicolson scheme given by

qn+1
j − qn

j +
1
2
∆tFj(qn) +

1
2
∆tFj(qn+1) = 0 (2-40)

and the second order BDF2 (backward differentiation formula) scheme given
by

3
2
qn+1
j − 2qn

j +
1
2
qn−1
j +∆tFj(qn+1) = 0 (2-41)

The main advantage of schemes such as (2-39)-(2-41) is that they are A-
stable (for linear F ) which means that their stability region contains the entire
complex half plane with negative real part. Therefore, theoretically the time
step is not bounded for numerical stability reasons. The difference between the
Crank-Nicolson scheme and the BDF2 scheme is that the latter is a multi-step
scheme whereas the first is a single-step scheme. A disadvantage of multi-step
schemes is the occurrence of parasites [4]. For an A-stable multi-step method
these parasites can be present but their norm remains bounded.

All implicit schemes of the type (2-38) can be written in the form

Hj(qn+1) = gj (2-42)

with Hj = qn+1
j +∆tβjFj(qn+1) and gj =

∑n
i=n−k αiqi

j −∆t
∑n

i=n−k βiFj(qi).
The right-hand side of (2-42) depends on previous solutions only and is there-
fore fixed during one time step. In general (2-42) represents a large set of cou-
pled nonlinear algebraic equations. The desired solution of (2-42) corresponds
to a fixed point of (2-38). For practical problems the number of equations
is very large and direct solution methods cannot be used. Therefore iterative
methods such as e.g. Newton iteration have to be used to solve (2-42). Newton
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iteration involves the Jacobi matrix of H. For large problems which arise in
CFD the computational cost of determining, storing and inverting the numeri-
cal Jacobi matrix of H is too high because large stencils are required to obtain
an accurate solution at an acceptable number of grid points. A possible way
to avoid some of these problems is to approximate the Jacobi matrix of H see
e.g. [102] which is referred to as quasi-Newton iteration. Although the compu-
tational cost per iteration decreases significantly, the quadratic convergence of
exact Newton iteration in the vicinity of the fixed point is lost. Additionally,
convergence problems with the Newton and quasi-Newton method may occur
if the changes in the solution qn and qn+1 are large which typically arise if ∆t
is relatively large. An alternative way to tackle this problem follows the ideas
of Jameson [48] where a pseudo time is added to (2-42) which yields

dvj

dτ
+ Hj(v) = gj (2-43)

The resulting steady state solution of (2-43) corresponds to the desired solution
qn+1 of (2-42). To solve (2-43) we use the Euler backward scheme in pseudo
time. Although Euler backward is only a first order accurate scheme this
choice has no effect on the temporal accuracy of the solution qn+1 of (2-42)
since the steady state solution of (2-43) is a solution of (2-42) for which the
temporal accuracy is determined by the choice of coefficients α and β in (2-38).
Applying Euler backward to (2-43), the following system has to be solved for
each pseudo time level

(
I

∆τ
+

∂H

∂v
(vk)

)
∆v = g −H(vk) (2-44)

where ∆v = vk+1 − vk, the superscript k indicates the pseudo time level and
∂H
∂v is a symbolic representation of the numerical Jacobi matrix of H defined in
(2-42). The iteration scheme in (2-44) corresponds to exact Newton iteration
for infinite ∆τ and exact numerical representation of the Jacobi matrix. The
pseudo time step ∆τ can be viewed as a relaxation parameter which for small
values of ∆τ increases the convergence range of the quasi-Newton iteration.
Note that due to the so-called delta formulation used in (2-44) it is possible
to approximate the Jacobi matrix without affecting the solution because the
proper solution of (2-42) is obtained if the norm of ∆v converges to zero.

2.4.3 TVD-property

In section 2.3.1 we remarked that the time stepping scheme may give rise to
an additional constraint on the limiter used in the MUSCL scheme for the
spatial discretisation. In Refs. [57, 83] the time stepping method results in
an upper bound of χ ≤ 2 arising from stability requirements. Harten showed
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in Ref. [39] that there appears to be an analogy between stability and TVD
for explicit time integration schemes. In order for the scheme to be TVD also
a CFL-like criterion has to be satisfied. The question which arises is whether
such an analogy also exists for implicit time integration schemes. To study
this we discretize the linear convection equation in (2-19) for a > 0 with the
Euler backward scheme in time. In combination with the MUSCL-scheme for
the spatial discretisation the overall discretisation results in

qn+1
j + ξj(qn+1

j − qn+1
j−1 ) = qn

j (2-45)

with

ξj =
a∆t

∆x

[
1 +

1
2
χ(Rj)−

1
2
χ(Rj−1)

Rj−1

]
. (2-46)

If we evaluate (2-45) for j and j − 1 and subtract these two expressions this
yields

(1 + ξn+1
j )(qn+1

j − qn+1
j−1 ) = (qn

j − qn
j−1) + ξn+1

j−1 (qn+1
j−1 − qn+1

j−2 ) (2-47)

It is not hard to show that the scheme is TVD if ξj is positive, which corre-
sponds to the positivity demand on the coefficients in [39]. Summing (2-47)
over −∞ < j <∞ and shifting the index of the second term on the right-hand
side gives

TV (qn+1) ≤ TV (qn). (2-48)

So, if the limiter function lies within the TVD-region (see figure 2-3) the
magnitude of the time step does not affect the TVD-property. This seems to
agree with the fact that the Euler backward scheme is A-stable. However, if
we perform the same analysis for the Crank-Nicolson scheme, which is also
A-stable, we obtain

(1 + 1
2ξ

n+1
j )(qn+1

j − qn+1
j−1 ) = (1− 1

2ξ
n
j )(qn

j − qn
j−1)+

1
2ξ

n+1
j−1 (qn+1

j−1 − qn+1
j−2 )

(2-49)

If we again assume that all coefficients are positive it is possible to show (as
performed above) that the Crank-Nicolson scheme is TVD if 0 ≤ ξj ≤ 2, which
leads to a restriction on the time step given by

∆t ≤ 2∆x

a

1
1 + max(χ(R))

(2-50)

It follows from (2-50) that the restriction on the time step becomes more severe
in case the maximum value of the limiter increases. The least severe restriction
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occurs if the limiter is zero which corresponds to the first order Roe scheme.
However, we observe that the positivity requirement on the coefficients is only
a sufficient condition for TVD and the analogy between stability and TVD for
the Crank-Nicolson scheme is not yet clear.

To further study the TVD-property we consider a numerical simulation of
the one-dimensional Burgers equation described in section 2.3.1 and compare
the Euler backward and the Crank-Nicolson scheme for a time step which is
five times larger than the time step used in section 2.2 and therefore violates
the inequality in (2-50). For the spatial discretisation we use Roe’s first order
scheme which has the least severe restriction on the time step according to
(2-50). In figure 2-4 the solution corresponding to the Euler backward scheme
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Figure 2-4: The solution q after 10 time steps with ∆t = 10
3 ∆x. The

◦’s indicate the solution obtained with the Crank-Nicolson scheme and
the +’s indicate the solution obtained with the Euler backward scheme.
The *’s represent the solution with the Crank-Nicolson scheme at the
same time level but obtained with ∆t = 2

3∆x.

is shown to remain monotonic. The solution obtained with the Crank-Nicolson
scheme shows wiggles near the shock which illustrates that the Crank-Nicolson
scheme affects the TVD-property of the spatial discretisation if the time step is
too large. A similar calculation with the BDF2 scheme reveals that the TVD-
property is violated for large time steps as well. Therefore, there does not
appear to exist an analogy between A-stability and TVD for general A-stable
methods.

2.5 Linear solvers

The application of a Newton or quasi-Newton iteration method such as (2-44)
to solve equation (2-42) results in a large linear system to be solved in every
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pseudo time step. In the following the linear system will be denoted by:

Ax = b (2-51)

where A ∈ IRn×n and n denotes the dimension of A. For finite volume methods
such as defined in section 2.3 the Jacobi matrix of the numerical flux results in
a sparse matrix for which the sparsity pattern is determined by the stencil of
the discretisation method. The magnitude of n is the number of equations in
the underlying differential equation multiplied by the number of grid points.
The inversion of such a large sparse system with a classical Gauss elimina-
tion procedure, which is an O(n3) method, is too expensive with respect to
CPU time. Also extra memory allocation is necessary since Gauss elimination
generates a complete fill-in of the original sparse matrix. Iterative methods
in general require less CPU time and often require no or little extra storage
of matrix elements. In this section we will outline two classes of iterative
solvers. Their effect on the convergence of the nonlinear problem (2-42) in the
application of an unsteady flow problem will be studied in chapter 3.

2.5.1 Basic iterative methods

The general idea behind iterative methods is, given an approximation xk of the
solution to (2-51) at iteration level k, to obtain a better approximation xk+1

in an efficient manner. A specific class of iterative methods can be obtained
by splitting the matrix A as

A = M −N, (2-52)

where M is a non-singular matrix and M−1 can be determined efficiently.
Corresponding to this splitting the iterative scheme is given by

Mxk+1 = Nxk + b. (2-53)

It is easily verified that the solution x∞ corresponds to the solution of (2-51)
if the scheme converges. Whether or not the method converges depends on
the eigenvalues of M−1N . Define the spectral radius of a matrix A by

ρ(A) = max{|λ| : λ ∈ spectrum of A}. (2-54)

Convergence of the iterative method is assured if the spectral radius of M−1N
is less than one [37]. A condition which guarantees ρ(M−1N) < 1 (see [37]) is
strict diagonal dominance which means that

ρ(M−1N) ≤ max
1≤i≤n

n∑

j=1,j &=i

∣∣∣∣
aij

aii

∣∣∣∣ < 1 (2-55)
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where aij is a matrix element of A in row i and column j. Some classical
splittings can easily be defined if we rewrite the matrix A by

A = L + U + D (2-56)

where L is the lower triangular part, U is the upper triangular part and D is
the diagonal of A. The Jacobi-method for example is obtained with M = D
and N = −(L+U) and the Gauss-Seidel method is obtained with M = D+L
or M = D + U and N = −L or N = −U . The convergence speed of these
methods depends on ρ(M−1N) and becomes very low when the spectral radius
is close to unity. In this thesis we will only use the basic forms because it turns
out that for the simulations performed in this thesis these methods compare
favorably, with respect to CPU time, to more advanced methods.

2.5.2 Krylov methods

Another class of iterative methods is based on the concept of a Krylov space.
In contrast to the basic iterative solvers of the previous section for which
the convergence rate is constant Krylov methods may exhibit super-linear
convergence [92]. Therefore Krylov methods may become very attractive if the
linear system has to be solved accurately. There exists an enormous amount
of literature on Krylov methods and applications of Krylov methods. Here we
briefly describe the ideas of Krylov methods and refer to literature for more
details [76]. Consider the basic iterative scheme in equation (2-53). If the
residual at iteration level k is defined as

rk = b−Axk, (2-57)

the solution xk lies in the following space

xk = x0 + 〈M−1r0, (M−1A)M−1r0, . . . , (M−1A)k−1M−1r0〉 (2-58)

which can be derived by recursive substitution of (2-53) and the use of (2-52).
The linear subspace in (2-58) is called the Krylov-space of dimension k and
is denoted by Kk(M−1A;M−1r0). It is clear from (2-53) that the memory
overhead in storing the Krylov space becomes significant if many iterations
are required to solve the linear system (2-51). Therefore the main practical
question is whether it is possible to design a method such that a minimal
number of vectors have to be stored to construct the new solution xk. Addi-
tionally, one would like to know the quality of the solution xk with respect to
the solution x of (2-51) i.e. is it possible to construct a new approximation xk

such that ||xk − x|| is minimal in some norm.
If one assumes that the matrix A is symmetric and positive definite it is

possible to construct a Krylov method with the above mentioned optimality
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conditions. This method is the so called CG (Conjugate gradient) method. It
has been shown in [37] that the residuals M−1r0 . . . M−1rk−1 span the Krylov
space. There are two features that make the CG method special. First, the
new solution xk obeys an optimality condition. Second, only M−1rk−1 has to
be stored. However, for the applications of interest in this work the matrix A is
not symmetric and positive definite. For general non-singular matrices A it is
shown in [29] that it is impossible to obtain a Krylov method which has both
properties of the CG method. So either the method satisfies an optimality
condition and long recurrences (large storage) or no optimality condition and
short recurrences. Here we use only one type of Krylov method for a general
matrix A. Details of this method will be outlined next.

The GMRES method

In chapter 3 we use the GMRES (General Minimized Residual) [76] method
which satisfies an optimality condition and necessarily possesses a long re-
currence which implies that the amount of work per iteration and the re-
quired memory grows with the number of iterations. In this method, Arnoldi’s
method is used to construct an orthonormal basis {v1, . . . , vk} for the Krylov
subspace Kk(M−1A;M−1r0). The Arnoldi method is described by

1. Choose x0 and compute r0 = M−1(b−Ax0) and v1 = r0/||r0||2

2. for j = 1, . . . , k do
vj+1 = M−1Avj

for i = 1, . . . , j do
hi,j = vT

j+1vi, vj+1 = vj+1 − hi,jvi

end
hj+1,j = ||vj+1||2, vj+1 = vj+1/hj+1,j

end

The elements hi,j form a (k + 1) × k Hessenberg matrix which we denote by
Hk. The approximate solution xk = x0 + zk is determined by solving the
minimization problem given by

||rk||2 = ||b−Axk||2 = min
z∈K(M−1A;M−1r0)

||r0 −Az||2 (2-59)

It has been shown in [76] that zk = Vkyk where Vk is the matrix with columns
vj and yk is the solution of the following least squares problem

||βe1 −Hky
k||2 = min

y∈IRk
||βe1 −Hky||2 (2-60)

where β = ||r0||2 and e1 is the first unit vector in IRk+1. The GMRES method
cannot break down since the solution x of (2-51) is obtained if hj+1,j = 0. For
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more details on the GMRES-method we refer to [76]. Although there is a wide
variety of Krylov methods for general matrices we have selected the GMRES
method because it cannot break down and is very robust.

2.6 Multigrid

In order to perform a time step implicitly a large set of coupled nonlinear
equations has to be solved which implies a considerable cost. It was shown in
section 2.4.2 that the problem to find the desired root of (2-42) can be equiv-
alently expressed as the differential equation (2-43) of which the steady state
solution corresponds to the desired solution of (2-42). A lot of research has
already been directed toward convergence acceleration techniques for steady
flow problems. One of the more elegant acceleration techniques is the so called
multigrid method for which Brandt [13] and Hackbusch [38] are known for their
pioneering work.

If one uses e.g. a Runge-Kutta scheme to solve (2-43) it is well known
that high frequency components of the error are reduced rapidly whereas low
frequency components of the error are reduced only very slowly. Hence, the
general idea of multigrid is to transfer the error, which remains after some
iterations with the relaxation method, onto a coarser grid. The dominant low
frequencies of the error on the fine grid appear as higher frequency contri-
butions on the coarse grid which in turn can be damped more efficiently by
applying the relaxation method on the coarse grid. In the next section the way
in which solutions, error and operators can be transferred onto a coarser grid
is described very briefly for a two-grid model. For a more elaborate discussion
on multigrid we refer to the work of Hackbusch [38] and Wesseling [97].

2.6.1 Two-grid model

In this section the general ideas of multigrid methods will be explained using
a two-grid model. Consider the general discrete set of equations

Nh(qh) = gh (2-61)

where h represents the mesh width, Nh in general represents a nonlinear dis-
crete operator (here the discrete operator H in (2-42)) in which also the bound-
ary conditions are incorporated, gh is the representation of the right-hand side
in (2-42) on the present grid and q is the solution vector. In order to solve
(2-61) a wide variety of relaxation methods can be used such as e.g. a time
stepping scheme or Newton iteration. After a few relaxations we then would
get

q̃h = qh − vh (2-62)
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where q̃h is an approximation of the numerical solution qh and vh is the error.
Note that since the exact solution is unknown the error is unknown as well.
The residual of the solution q̃h can be defined as

rh = gh −Nh(q̃h) (2-63)

Substitution of (2-62) and (2-63) into (2-61) yields

Nh(q̃h + vh) = Nh(q̃h) + rh (2-64)

In this equation vh is the only unknown and if the relaxation method damps
only the high frequencies efficiently, vh contains only low frequency compo-
nents. In order to find vh this equation is next transferred onto a coarser grid
with mesh size H and the basic equation is represented by

NH(qH) = gH (2-65)

where NH is the coarse grid approximation to Nh and gH the approximation
of the right-hand side of (2-64). The right-hand side is calculated by

gH = NH(IH
h q̃h) + IH

h (rh) (2-66)

where IH
h denotes a restriction operator from the fine to the coarse grid. The

restriction operator may be defined differently for the solution and the residual.
The representation of the right-hand side of (2-64) is not unique and our
specific choice will be discussed shortly. The initial guess for the solution of
(2-65) is obtained by restriction of q̃h onto the coarse grid. In the two grid
model it is assumed that equation (2-65) is solved exactly and we denote this
solution by q̃H . A new approximation of qh on the fine grid is then obtained
by prolongation of the correction term obtained on the coarse grid to the fine
grid as follows

˜̃q
h

= q̃h + Ih
H(q̃H − IH

h (q̃h)) (2-67)

where Ih
H denotes the prolongation operator from the coarse grid to the fine

grid. The advantage of the current approximation of the right-hand side of
(2-64) is associated with the coarse grid correction in (2-67). If the solution
of (2-61) is obtained the prolonged correction equals zero.

In Ref. [38] it has been shown that two properties have to be satisfied to
ensure convergence of the two-grid model: the smoothness property and the
approximation property. The smoothness property expresses the requirement
that the residual rh in (2-63) and the error vh in (2-62) should contain only
frequencies which can be represented sufficiently accurate on the coarser grid
and thus the high frequencies have to be damped sufficiently by the relaxation
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method. The approximation property requires that equation (2-61) has to
be represented sufficiently accurate on the coarse grid, which results in the
following constraint on the restriction and prolongation operators. In Refs.
[38, 97] it is shown that the operators involved should satisfy

mr + mp > 2m (2-68)

where mr and mp denote the order of accuracy of the restriction and pro-
longation operators and 2m denotes the order of the underlying differential
operator.

The generalization to multiple grids is straightforward. The nonlinear
system in equation (2-65) on the coarse grid can be transferred onto yet a
coarser grid in a similar way. In this way a sequence of grids can be traversed
in order to solve (2-61) where the amount of computational work obviously
decreases considerably per coarsening. For more details we refer to [97].
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Chapter 3

The shock tube

3.1 Introduction

The main purpose of this chapter is to study the performance of the linear
solvers described in the previous chapter and their influence on the overall
convergence of the nonlinear system involved in the implicit time integration
scheme during one time step for a nonlinear unsteady test case. As a model
we numerically solve the one-dimensional Euler equations for the well known
unsteady shock tube problem. This flow contains several physical phenomena
which also occur in more complicated flows such as a shock wave and a con-
tact discontinuity. For the time integration we use the second order implicit
Crank-Nicolson scheme. In section 3.2 we present the one-dimensional Euler
equations and describe the shock tube problem. The spatial discretisation is
discussed in section 3.3. In section 3.4 the numerical approximation of the
flux Jacobi matrix is outlined. Numerical results concerning the performance
of the linear solvers are presented in section 3.5. As mentioned in the pre-
vious chapter large time steps may affect the TVD-property of the spatial
discretisation. However, for systems of equations the TVD property is not
well defined. Therefore in section 3.6 we discuss the entropy production of a
numerical method which in some sense is equivalent to the TVD property for
systems of equations. In section 3.7 the conclusions are summarized.

3.2 Governing equations and problem definition

The equations governing one-dimensional inviscid flow are the one-dimensional
Euler equations. In conservative variables these read

∂q

∂t
+

∂f(q)
∂x

= 0 (3-1)

39
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with

q =




ρ
ρu
E



 and f =




ρu

ρu2 + p
u(E + p)



 (3-2)

where ρ represents the density, E the total energy density, p the pressure and
u the velocity. The constitutive equation for the pressure is given by

p = (γ − 1)(E − 1
2
ρu2) (3-3)

where γ is the adiabatic gas constant which we take γ = 1.4.
The shock tube problem [77] can be described by analogy with the fol-

lowing physical setting. Consider a tube filled with gas and divided into two
compartments by a membrane in the middle of the tube. On both sides of
the membrane the gas is in equilibrium with a higher density and pressure
in one half of the tube. Then the membrane is removed instantaneously and
both states start to mix towards a new equilibrium. The temporal behavior
during the initial process turns out to exhibit special features which also occur
in more complicated aerodynamical configurations and make the shock tube
problem an interesting study object. The flow possesses three distinct waves
separating regions in which the state variables are constant, see e.g. figures
3-1 and 3-2. Across two of these regions discontinuities occur in some of the
state variables. First a shock wave across which the density and the pres-
sure are discontinuous propagates into the region of lower pressure. This is
followed by a contact discontinuity across which the density is discontinuous.
The third wave propagates in the opposite direction and there is a continuous
transition between the constant states on either side of it. This wave is called
a rarefaction wave since the density of the gas decreases as the wave passes
through. Another advantage of the present shock tube problem is that there
is a known analytical solution used for reference.

3.3 Spatial discretisation

In section 2.3.1 the flux splitting scheme of Roe was described for a scalar
equation which we now extend to a system of equations. In relation to equa-
tion (2-22) two requirements had to be satisfied by the approximation of the
characteristic wave speed. For a scalar equation this wave speed was defined
as the derivative of the flux function. While for a system of equations the
derivative of the flux vector with respect to the state vector q is a matrix
and an additional requirement has to be satisfied which originates from the
hyperbolicity of the Euler equations. Let A(q) = ∇q(f(q)), then a Roe type
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linearisation of the Euler equations exists if the following requirements are met
[35, 73]

1. Aj+ 1
2
(q, q) = A(q)

2. Aj+ 1
2
(ql, qr)(qr − ql) = f(qr)− f(ql)

3. Aj+ 1
2

is not defect, and has real eigenvalues and eigenvectors

where Aj+ 1
2

is the numerical flux Jacobi matrix. The third requirement pre-
serves the hyperbolicity of the Euler equations and the state vectors ql and
qr represent the left and right state vectors as described in section 2.3.1. The
numerical flux hj+ 1

2
in (2-13) on the control volume edge is approximated by

hj+ 1
2

=
1
2
(f(ql) + f(qr))−

1
2
|Aj+ 1

2
|(qr − ql) (3-4)

The absolute value of the flux Jacobi matrix A is defined as |A| = R|Λ|L,
where R and L = R−1 are right and left eigenvector matrices of A and |Λ| is a
diagonal matrix containing the absolute values of the eigenvalues of the matrix
A. The matrix Aj+ 1

2
is evaluated using the so-called Roe state variables which

are determined by calculating the primitive variables according to

ρlr =
ρl + dρr

1 + d

ulr =
ul + dur

1 + d

Hlr =
Hl + dHr

1 + d

(3-5)

with d =
√

ρr/ρl and H the specific enthalpy defined by H = (E + p)/ρ and
thus the flux Jacobi matrix becomes a function of qlr which is the approxi-
mation of qj+ 1

2
. For the first order Roe scheme ql and qr equal qj and qj+1

respectively. To obtain a higher order accuracy the MUSCL technique (see
section 2.3.1) is applied to the conservative state variables separately to obtain
an improved approximation of ql and qr to be used in (3-5).

3.4 Approximation of the Jacobi matrix

In this section we define the numerical approximation of the Jacobi matrix.
For the time integration we use the Crank-Nicolson scheme defined in section
2.4.2 where it was shown that a nonlinear system H(qn+1) = g(qn) has to be
solved every time step and H and g are given by

Hj(qn+1) = qn+1
j + 1

2∆tFj(qn+1)
gj(qn) = qn

j − 1
2∆tFj(qn) (3-6)
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where F represents the numerical flux. The Jacobi matrix of H is symbolically
written as

∂H

∂q
= I +

1
2
∆t

∂F

∂q
(3-7)

where I denotes the identity matrix and ∂F
∂q represents the flux Jacobi matrix

of the spatial discretisation F . Due to the size of the computational stencil of
the higher order MUSCL scheme for the two-dimensional flows considered in
chapters 4 and 6 the computational cost of determining, storing and inverting
the flux Jacobi matrix of F is very high. For the present one-dimensional test
case the MUSCL scheme results in a five-point stencil and a sparse matrix
with five bands of 3 × 3 matrices is obtained. Although the computational
costs for the exact inversion of this Jacobi matrix are quite acceptable, we
will use the same first order approximation of the flux Jacobi matrix as will
be used for the two-dimensional flow problem simulated in chapter 4. The
details of this first order approximation are discussed below. Additionally, an
exact numerical flux Jacobi matrix is determined for the first order scheme
in section 3.4.2. In this way the effect of the first order approximation of the
Jacobi matrix can be studied.

3.4.1 Numerical approximation of the flux Jacobi matrix

The approximation of the flux Jacobi matrix of the numerical flux F is based
on the first order Roe scheme which has only a three-point stencil compared
to the five-point stencil of the MUSCL scheme. The numerical flux, F , for
Roe’s scheme in a grid point j can be written as:

Fj = A−
j+ 1

2
(qj+1, qj)(qj+1 − qj) + A+

j− 1
2
(qj, qj−1)(qj − qj−1) (3-8)

The matrices A+ and A− are determined by the positive and negative eigen-
values of the matrix A by

A = RΛL = R(Λ+ + Λ−)L = RΛ+L + RΛ−L = A+ + A− (3-9)

with R and L the right and left eigenvectors of the matrix A and Λ,Λ+ and Λ−

diagonal matrices containing all the eigenvalues, only the positive eigenvalues
and only the negative eigenvalues of A respectively. In order to obtain the
flux Jacobi matrix of the numerical flux F , the derivatives of the matrices
A+ and A− to qj−1, qj and qj+1 have to be determined. Since we already
use an approximation of the flux Jacobi matrix for the higher order stencil
we additionally assume that the matrices A+ and A− are independent of q.
In total this results in the following block-tridiagonal approximation of the
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Jacobi matrix of H in (3-6), where the diagonal and sub-diagonals contain
3× 3 matrices given by:

Dj = I + 1
2∆t

(
A+

j− 1
2
−A−

j+ 1
2

)

Ej = 1
2∆tA−

j+ 1
2

Wj = −1
2∆tA+

j− 1
2

(3-10)

where Dj, Ej and Wj stand for the diagonal, east and west contribution to the
Jacobi matrix of H corresponding to the grid point xj.

3.4.2 Numerical flux Jacobi matrix

In order to examine the effect of the first order approximation used for the flux
Jacobi matrix in relation to different spatial discretisation scheme, simulations
are performed with the third order MUSCL scheme as well as with the first
order Roe scheme. It is also possible for the first order scheme to determine a
numerical flux Jacobi matrix using the numerical derivative defined by

∂Fj

∂qi
k

≈
Fj(q|qi

k + ε)− Fj(q)
ε

, (3-11)

where j and k represent the grid node points, q represents the state vector, the
superscript i denotes the i-th component of the state vector, q|qi

k + ε denotes
that only the i-th component with index k is perturbed, and ε is a sufficiently
small real number. With this approach we can obtain a full Newton method
for the first order scheme and in the vicinity of a root of H = g the nonlinear
system should converge quadratically. Using the two approximations of the
flux Jacobi matrix it is possible to assess the effect of the approximation of
the flux Jacobi matrix for the first order scheme on the number of required
Newton iterations in order to solve the system H = g.

3.5 Numerical results

In this section we present the numerical results for Sod’s shock tube problem
[77] for which the analytical solution is known. First we present the numerical
solution obtained with the Crank-Nicolson scheme for the time integration in
combination with the MUSCL scheme for the spatial discretisation showing
that this results in an accurate approximation of the solution to the shock
tube problem. Second we study the effect of different linear solution methods
on the number of required quasi-Newton iterations associated with the desired
accuracy of the solution for one time step if the corresponding linear system
is not solved to machine accuracy. We use this information in order to select
an appropriate linear solver for the flow applications in the next chapters.
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3.5.1 Numerical solution

The initial condition for Sod’s shock tube problems is given by

q(x) =
{

ql if 0 ≤ x ≤ 1
2

qr if 1
2 < x ≤ 1 (3-12)

with (ρl, ul, pl) = (1, 0, 1) and (ρr, ur, pr) = (0.125, 0, 0.1). The values of nu-
merical parameters in the numerical method correspond to the values used
in [15]. The simulation starts at t = 0 and we will compare the numerical
solution at t = 0.15 with the analytical solution. For accuracy reasons a small
time step is needed because the time scale of the physical process is very
small. The time step is determined with (2-37) and we take a CFL number of
σ = 0.5. For the one-dimensional Euler equations the wave propagation speed
a in (2-37) is approximated by the absolute value of the maximum eigenvalue
of the flux Jacobi matrix which corresponds to |u| + c, where c denotes the
speed of sound. The physical domain is discretized by 160 grid points. Each
time step we solve the resulting nonlinear equation H = g with an accuracy of
ε = 10−10. The specific form of the stopping criterion related to the accuracy
is given in (3-15). The entropy fix parameter defined in section 2.3.1 is set to
δ = 0.02.
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Figure 3-1: The density distribution at t = 0.15. The solid line rep-
resents the analytical solution and the o’s the numerical solution ob-
tained with the Crank-Nicolson scheme in combination with the MUSCL
scheme.

In figure 3-1 the numerical density distribution is shown. Clearly, four
different constant states for the density can be distinguished as discussed in
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Figure 3-2: The pressure distribution at t = 0.15. The solid line rep-
resents the analytical solution and the o’s the numerical solution ob-
tained with the Crank-Nicolson scheme in combination with the MUSCL
scheme.

section 3.2. From left to right, the rarefaction wave displays a smooth transi-
tion between two states whereas the contact discontinuity and the shock wave
show a discontinuous transition respectively. The shock wave is captured with
only two interior grid points. The numerical approximation of the constant
state of the density in front of the contact discontinuity appears to contain
small numerical oscillations. This artifact does not disappear after grid re-
finement although the distribution of the small oscillations concentrates more
in a region just in front of the contact discontinuity. The small oscillations
do not vanish if the time step is decreased even further which indicates that
the present CFL number is sufficient for temporal accuracy. These oscillations
seem to contradict the TVD property of the MUSCL scheme and requires
some further attention. The TVD property is only defined for scalar one di-
mensional equations and the extension to systems of equations or multiple
dimensions is not straightforward. In Ref. [35] a definition for a system of
equations is presented where it is observed that for a typical time integration
scheme and a linear flux function the TVD property holds under the same
CFL-like restriction as in the scalar case. However, we will follow a different
approach used in [15] and study the discrete entropy production which will be
discussed in section 3.6. In addition to the density distribution we also present
the pressure and entropy distribution in figures 3-2 and 3-3 respectively where
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Figure 3-3: The entropy distribution at t = 0.15. The solid line rep-
resents the analytical solution and the o’s the numerical solution ob-
tained with the Crank-Nicolson scheme in combination with the MUSCL
scheme.

the entropy is defined as

s = log(
ργ∞
p∞

p

ργ
). (3-13)

where ρ∞ and p∞ are reference values for the density and the pressure. From
figure 3-2 it is clear that the pressure is constant over the contact discontinuity
and no numerical oscillations are present. Figure 3-3 reveals that the contact
discontinuity as well as the shock wave cause an increase of entropy. The
overshoot in entropy in front of the contact discontinuity is related to the
small oscillations in the density by (3-13).

We conclude that the Crank-Nicolson scheme in combination with the
MUSCL scheme results in an accurate approximation of the solution to the
shock tube problem for the present numerical parameters, comparable to the
results found in [15]. Although for the present magnitude of the time step
oscillations occur in the density component of the solution, which seems to
contradict the TVD-property, we show in section 3.6 that this solution is still
acceptable with respect to the total entropy production.
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3.5.2 Comparison of linear solvers

In this section we study the effect of several linear solvers on the required CPU
time and the convergence of,

H(qn+1) = g(qn) (3-14)

in the case the linear system is not solved to machine accuracy for one time-
step. Because we are interested in large time steps for future applications of
the implicit time integration scheme we take a CFL number σ = 1.5 for all
simulations in this section. To study the influence of the approximation of the
flux Jacobi matrix for the MUSCL scheme we also perform simulations for the
first order scheme where the numerical flux Jacobi matrix and the numerical
flux are more closely related. Also, the effect of the initial discontinuity at
t = 0 is studied by performing simulations with a smooth initial condition
which is obtained by smoothing the two states in (3-12) with a third order
polynomial interpolation. In the following the discontinuous initial condition
is denoted by case I and the smooth initial condition is denoted by case II.

The quasi-Newton iteration method used to obtain the solution of (3-14)
can be written in the form of (2-44) with ∆τ =∞. The iteration is stopped if

||∆vk||2
||∆v0||2

< 10−10 (3-15)

where the superscript k stands for the iteration level of the quasi-Newton
process. The specific form of this stopping criterion will be discussed in chapter
6. The linear system, in the following denoted by Ax = b, for each quasi-
Newton iteration level is solved or approximately solved with the linear solvers
described in section 2.5:

1. Block-tridiagonal solver, which is a direct solver

2. Point Jacobi.

3. Point Gauss-Seidel

4. CG ( applied to AT Ax = AT b).

5. GMRES.

For the first order scheme we additionally use the numerical flux Jacobi matrix
defined in section 3.4.2 in combination with the block-tridiagonal solver to
obtain the full Newton scheme which should result in quadratic convergence
towards a fixed point of (3-14). In the following the number of iterations
for solving the nonlinear system is denoted by outer iterations whereas the
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# outer # inner CPU (s)
Full Newton 6 – 4.04
Block-tridiagonal 13 – 0.78
Jacobi 13 8 0.94
Gauss-Seidel 13 6 0.90
CG(AAT ) 13 15 13.66
GMRES 13 4 1.02

Table 3-1: Minimal number of outer iterations needed for convergence
and corresponding minimal number of inner iterations for the different
linear solvers with Roe’s scheme for case I.

# outer # inner CPU (s)
Block-tridiagonal 33 – 1.96
Jacobi 33 9 2.42
Gauss-Seidel 33 7 2.37
CG(AAT ) 32 17 33.78
GMRES 32 8 2.91

Table 3-2: Minimal number of outer iterations needed for convergence
and corresponding minimal number of inner iterations for the different
linear solvers with the MUSCL scheme for case I.

number of iterations used in the approximation of the solution to the linear
system is denoted by inner iterations.

In tables 3-1 to 3-4 the results are presented for the different test cases
described above. The tables concerning the first order Roe discretisation have
one additional row corresponding to the full-Newton scheme for which the
expected quadratic convergence was obtained. The number of outer itera-
tions with the full-Newton method is less than for the quasi-Newton iteration.
However, the CPU time which is the quantity of most practical interest is ap-
proximately a factor four to five times larger than needed for the quasi-Newton
iteration which indicates that an approximation of the flux Jacobi matrix may
have a positive influence on the required CPU time for convergence.
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# outer # inner CPU (s)
Full Newton 4 – 2.66
Block-tridiagonal 7 – 0.38
Jacobi 7 6 0.43
Gauss-Seidel 7 5 0.43
CG(AAT ) 7 10 7.24
GMRES 7 5 0.55

Table 3-3: Minimal number of outer iterations needed for convergence
and corresponding minimal number of inner iterations for the different
linear solvers with the Roe scheme for case II.

# outer # inner CPU (s)
Block-tridiagonal 29 – 1.71
Jacobi 29 9 2.14
Gauss-Seidel 29 9 2.24
CG(AAT ) 29 14 30.47
GMRES 28 9 2.67

Table 3-4: Minimal number of outer iterations needed for convergence
and corresponding minimal number of inner iterations for the different
linear solvers with the MUSCL scheme for case II.

Define the measure of accuracy with which the linear system is solved by

||Ax̃− b||2
||b||2

(3-16)

where x̃ is an approximation of the solution to the linear system Ax = b.
With the block-tridiagonal solver the linear system is solved up to machine
accuracy each inner iteration level. Empirically we found that the number of
outer iterations is minimal if the block-tridiagonal solver is used. Although this
seems to indicate that it is necessary to solve the linear system very accurately
it appears that it is sufficient to solve the linear system up to a certain accuracy
depending on the spatial discretisation. It was found that for the first order
Roe scheme and for the MUSCL scheme the accuracy with which the linear
system has to solved is approximately 10−3 and 10−4 respectively.

In tables 3-1 to 3-4 the minimal number of inner iterations corresponding
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to the minimal number of outer iterations are given. If the number of inner
iterations is decreased this leads to an increase of the number of outer iterations
in this case which explains the naming minimal number of inner iterations.
The number of iterations needed for the Gauss-Seidel method is alway less or
equal to the number of iterations needed with the Jacobi method. Since the
accuracy with which the linear system has to be solved does not depend on
the linear solver this can be explained by the fact that the convergence rate
of the Gauss-Seidel method is about a factor two larger than the convergence
rate of the Jacobi method [37]. The convergence rate of the CG method is
related to the condition number κ(A) = ||A||2||A−1||2 of the matrix A and
hence the convergence for AT Ax = b is related to κ(A)2 which decreases the
convergence rate [37] and thus explains the large number of inner iterations
that are needed. The required CPU time for the CG method is high compared
to the other methods. Partly this is due to the higher number of iterations but
it is also due to the construction of AAT and AT b. Although we recognize that
an optimal use of Krylov methods is only possible if a proper preconditioning
(see e.g. [91]) is applied to accelerate the convergence of the linear system, we
observe that the required accuracy with which the linear system needs to be
solved is quite low and only a few linear iterations are necessary. Therefore,
no significant decrease of CPU time is expected here if a preconditioning is
applied to the linear system. In tables (3-2) and (3-4) it appears that fewer
outer iterations are needed if GMRES is used. However, if the accuracy in
(3-15) is changed this observation does not hold and appears to be related to
round-off effects. Although one fewer outer iteration is required this method
is not efficient with respect to CPU time.

Additionally, it can be observed that for all simulations the MUSCL scheme
required more outer iterations than the first order scheme which indicates that
the accuracy of the approximation of the flux Jacobi matrix has a significant
influence on the required number of outer iterations. The presence of a shock
also affects the number of required outer iterations because for test case II the
number of outer iterations is less than that for test case I for both discretisation
schemes. This effect is most pronounced for the first order scheme. For the
MUSCL scheme it is less significant which may be related to the approximation
of the flux Jacobi matrix described above.

3.6 Entropy production

In this section we study the effect of a comparatively large time step on the
quality of the numerical solution. In section 2.4.3 it was shown that in spite
of the A-stability of the Crank-Nicolson scheme, the numerical scheme was
not TVD for large time steps. The TVD-property in (2-11) is defined for
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scalar one-dimensional problems. The extension to systems of equations or
multi-dimensional problems is not straightforward. In Ref. [35] a TVD-norm
is defined for a system of equations in one dimension which, in the linear case
and in combination with a particular choice of time integration method, leads
to the same restriction on the time step as in the scalar case. However, for the
Crank-Nicolson scheme we were not able to formulate a necessary condition
on the time step for the scalar case let alone for the present application. To
circumvent this problem we turn to the concept of entropy satisfying solutions
(see e.g. [57]). Although no one-to-one correspondence between TVD and
entropy is proved for numerical schemes in general, it is made plausible in
[15, 62, 66, 78] that a certain similarity does exist.

3.6.1 Entropy satisfying solutions

To introduce the definition of entropy satisfying solutions we turn to the vis-
cous Burgers equation given by

∂q

∂t
+

∂ 1
2q2

∂x
= ε

∂2q

∂x2 (3-17)

with ε ≥ 0. As the initial condition we take a piecewise constant initial
condition

q(x, 0) =
{

ql if x < 0
qr if x > 0 (3-18)

For ε = 0 (inviscid case) and ql > qr there exists a unique weak solution
to (3-17) corresponding to a shock wave which propagates with shock speed
s = (ql + qr)/2 and is given by

q(x, t) =
{

ql if x < st
qr if x > st

(3-19)

The characteristic curves of this solution in each region where q is constant
run into the shock as time advances. However for ε = 0 and ql < qr there
exist infinitely many weak solutions to (3-17). One of these solutions is equal
to the solution (3-19) but now the characteristics run out of the shock. This
solution is not stable to perturbations. Another weak solution is the so-called
rarefaction wave given by

q(x, t) =






ql if x < qlt
x/t if qlt < x < qrt
qr if x > qrt

(3-20)
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which is stable to perturbations. In fact this solution corresponds to the
vanishing viscosity solution of (3-17) defined by

q(x, t) = lim
ε↓0

qε(x, t) (3-21)

Since the concept of vanishing viscosity is not easy to work with for more
complicated differential equations one would like a more practical condition.
In Ref. [57] different criteria are described in order to arrive at the physically
correct solution for the inviscid Burgers equation which corresponds to the
vanishing viscosity solution of (3-17). Here we use the concept of the so-called
entropy function since this also provides a tool to test a numerical scheme on
its capability to yield a physically correct solution. Consider a general scalar
conservation law given by

qt + f(q)x = 0 (3-22)

where the subscript denotes the corresponding derivative. Assume that there
exists a convex function η(q) that satisfies another conservation law for a
certain entropy flux ψ given by

η(q)t + ψ(q)x = 0 (3-23)

Then it is not hard to show that if q is a solution to (3-22) then

η′(q)f ′(q) = ψ′(q) (3-24)

which is called the compatibility condition. In Ref. [57] it is shown that the
vanishing viscosity solution q(x, t) of the general differential equation

qt + f(q)x = εqxx (3-25)

also known as the entropy solution of (3-22), satisfies the inequality

η(q)t + ψ(q)x ≤ 0 (3-26)

in the weak sense. Clearly, this provides a tool that is useful in analyzing
numerical methods. If a discrete form of the entropy inequality (3-26) holds
for a numerical method, it can be shown that the solution converges to the
entropy solution [57].

3.6.2 Application to the Euler equations

We now apply the concept of entropy satisfying solutions to the numerical so-
lution of the one-dimensional Euler equations. In order to arrive at a proper
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Figure 3-4: The entropy production of the numerical scheme obtained
with the Crank-Nicolson scheme in combination with the MUSCL scheme
for σ = 0.5.

entropy inequality, as in (3-26), we invoke the Second Law of Thermodynam-
ics. For smooth solutions q the Euler equations in (3-1) can be transformed
to

∂Q

∂t
+

∂k(Q)
∂x

= 0 (3-27)

with

Q =




ρ
ρu
ρs



 and k =




ρu

ρu2 + p
ρus



 (3-28)

where s denotes the specific entropy. For a weak solution q of the Euler equa-
tions which contains a discontinuity the equal sign in (3-27) does not hold for
the entropy equation which according to the Second Law of Thermodynamics
must satisfy

∂ρs

∂t
+

∂ρus

∂x
≥ 0 (3-29)

If we discretize both (3-1) and (3-27) with a finite volume method this yields

Ωj
dqj

dt
+ hj+ 1

2
− hj− 1

2
= 0 (3-30)
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Figure 3-5: The density distribution at t = 0.15. The solid line repre-
sents the analytical solution and the dashed line represents the numerical
solution obtained with the Crank-Nicolson scheme in combination with
the MUSCL scheme for σ = 2.5 .

and

Ωj
dQj

dt
+ kj+ 1

2
− kj− 1

2
≥ 0 (3-31)

respectively, where kj+ 1
2

is the numerical approximation of the flux k at the
cell interface and the inequality applies only to the third component of Q.
Substitution of (3-30) in (3-31) gives

−Qq

(
hj+ 1

2
− hj− 1

2

)
+ kj+ 1

2
− kj− 1

2
≥ 0 (3-32)

where Qq denotes the Jacobi matrix of the transformation from the vector
space q to the vector space Q. This inequality is the discrete equivalence of
the entropy inequality (3-26) for the Euler equations. The discretisation of
the entropy flux k(Q) is usually performed with the same discretisation as
for the flux f(q). In this way the entropy flux is determined in a so-called
Lax-c-consistent manner as in [15, 78] which means that the compatibility
requirement in (3-24) applies to the discrete flux functions hj+ 1

2
and kj+ 1

2
.

In the following we illustrate that for a comparatively large time step the
numerical solution does not satisfy the discrete entropy inequality (3-26) at
t = 0.15. For all simulations the nonlinear system at every time step is solved
with an accuracy of 10−10, as defined in (3-15). First we show that the nu-
merical solution obtained in section 3.5.1 with σ = 0.5 results in a solution
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Figure 3-6: The pressure distribution at t = 0.15. The solid line repre-
sents the analytical solution and the dashed line represents the numerical
solution obtained with the Crank-Nicolson scheme in combination with
the MUSCL scheme for σ = 2.5 .

that satisfies the discrete entropy inequality (3-32). In figure 3-4 the discrete
entropy production is presented. The large peak of the entropy production
occurs at the shock, whereas the small peak corresponds to an entropy pro-
duction at the contact discontinuity which agrees well with the results found
in [15]. The entropy production in the entire domain is non-negative which im-
plies that a physically correct solution is obtained. We may conclude that the
small oscillations observed in the density in figure (3-1) do not imply a physi-
cally incorrect solution in the entropy sense. Second, the solution at t = 0.15
was determined with σ = 2.5. In figures 3-5 to 3-6 the density distribution
and the pressure distribution are presented. The amplitude of the oscillations
in the density before the shock has increased significantly compared to the os-
cillations obtained with σ = 0.5. Also, oscillations in the pressure distribution
are present near the shock which were not observed in the solution obtained
with σ = 0.5. In figure 3-7 the entropy production is plotted. Clearly, there is
a negative entropy production between the contact discontinuity and the shock
wave which indicates that a non-physical solution is obtained. The magnitude
of the entropy production peak has decreased considerably compared to the
entropy production peak for the solution obtained with σ = 0.5. This may
be explained by the number of grid points contained in the shock. The shock
contains four points for the solution obtained with σ = 2.5 compared to two
points for the solution obtained with σ = 0.5 and a lower entropy production
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Figure 3-7: The entropy production of the numerical scheme obtained
with the Crank-Nicolson scheme in combination with the MUSCL scheme
for σ = 2.5.

may be expected. This result illustrates that similar to the numerical results
for the one-dimensional Burgers equations in section 2.4.3 a relatively large
time step using the Crank-Nicolson scheme may result in a physically incorrect
solution.

3.7 Conclusions

In the previous sections we numerically solved the one-dimensional Euler equa-
tions for Sod’s shock tube problem with the first order Roe scheme and the
third order MUSCL scheme for the spatial discretisation combined with the
Crank-Nicolson scheme for the temporal integration.

The influence of the numerical approximation of the flux Jacobi matrix
was studied for the first order scheme by comparing the required number of
outer iterations for the quasi-Newton and full-Newton method corresponding
to the approximation of the flux Jacobi matrix in section 3.4.1 and section
3.4.2 respectively. For the full-Newton method the number of required outer
iterations for one time step is minimal. Although the quasi-Newton method
requires more outer iterations during one time step this method is compu-
tationally more efficient and thus constitutes a more promising method for
practical applications. It is illustrated that for the MUSCL scheme the num-
ber of required outer iterations is considerably larger than for the first order
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scheme. An extension of the stencil used in the numerical flux Jacobi matrix
is a possible way to improve the quality of the numerical approximation and
fewer outer iterations may be expected. However, given the above mentioned
results for the first order scheme with respect to CPU time we expect that the
additional computational costs of determining, storing and inverting the flux
Jacobi matrix do not outweigh the additional cost of more outer iterations.

It turns out that the required accuracy with which the linear system has
to be solved is only about three or four decades depending on the spatial dis-
cretisation corresponding to only a few inner iterations. All iterative methods
that have been used achieve the required accuracy with very few iterations.
In general the Gauss-Seidel method leads to the lowest overall CPU time in
comparison to the other iterative methods. Therefore, in the remainder of this
thesis we use the Gauss-Seidel method for the inner iteration.

Finally, we observe that similar to the results for the one-dimensional Burg-
ers equation in section 2.4.3 a large time step results in a numerical solution
which is physically not correct. Although no proof of the relation between
TVD and entropy satisfying solutions for the MUSCL scheme is given we have
provided further indication that these two concepts are strongly related as was
also observed by Merriam [62].
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Chapter 4

Inviscid flow around an airfoil

4.1 Introduction

In this chapter we numerically solve a steady transonic inviscid flow problem
around an airfoil. Using the second-order explicit Runge-Kutta method in
combination with the MUSCL-scheme and the limiter defined in section 2.3 it
is not possible to obtain a machine accurate solution. In contrast to this result
a machine accurate solution can be obtained with an appropriate implicit time
integration scheme. Two points will be addressed in this chapter. First we
consider the computational efficiency of the implicit method compared to the
explicit scheme. Second we study the difference between the solution obtained
with the implicit and explicit method and we give some evidence that the
convergence stall observed when using the explicit scheme is in fact caused by
a small physical instability in the wake.

The introduction of higher order TVD schemes for transonic flow applica-
tions enables the combination of two desirable features of a numerical scheme:
a minimal amount of artificial dissipation and monotonicity preservation which
eliminates numerical oscillations near shocks. Examples of such TVD schemes
which are commonly used are MUSCL schemes [56] which incorporate a nonlin-
ear function which limits gradient differences of the solution between adjacent
cells. As is described in section 2.3.1 the graph of this limiter should satisfy
specific constraints in order to be of higher order and monotonicity preserving
as was shown in figure 2-3. This still leaves a certain freedom in the choice
of the limiter. Commonly used limiters in literature are the superbee of Roe,
Van Albada’s limiter, the minmod limiter and Van Leer’s limiter [83]. These
limiters can be divided into two groups, differentiable and non-differentiable
limiters.

In spite of the favorable properties of TVD schemes, it is often remarked
in literature that the limiter may inhibit convergence to steady state. In Refs.
[89, 90] it is remarked that a non-differentiable limiter inhibits convergence to
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steady state independent of the time integration method. To obtain a steady
state solution in Refs. [89, 90] a differentiable limiter was used. Conversely,
employing a multi-grid technique and an optimized explicit time integration
scheme Park and Kwon [67] obtain a steady state solution for a large class
of limiters, including non-differentiable limiters. In this chapter we show that
with a proper implicit scheme it is also possible to obtain a machine accu-
rate steady state solution for the Euler equations with the non-differentiable
minmod limiter.

Eriksson and Rizzi [28] have developed an approximate eigenvalue anal-
ysis for a semi-discrete centered finite volume scheme and adopted this to a
transonic inviscid flow around an airfoil. They observed that there are modes
which are not damped well and correspondingly dominate the asymptotic con-
vergence to steady state. These modes appeared to be centered around the
shock, the wake and the stagnation point of the airfoil and have eigenval-
ues with a very small negative real part. They conclude that the addition
of artificial dissipation or the application of local time stepping is beneficial
for convergence because it decreases the real part of the eigenvalues of these
modes, thus damping them better.

We show, conversely, that methods which do obtain a machine accurate
steady state solution in fact may add too much artificial dissipation. By
studying the differences in the solution obtained with an explicit Runge-Kutta
time stepping scheme and an implicit method there appears to be a weak
instability in a region behind the trailing edge. On a coarse grid with a
resolution comparable to the finest grid in [28] additional instabilities show up
near the shock and stagnation point but these regions of instabilities disappear
when refining the grid. A grid refinement study shows that the main region of
instability in the wake does not vanish on a very fine grid. These instabilities
are also confirmed by linear stability theory (LST).

The contents of this chapter is as follows. In section 4.2 we state the govern-
ing equations and the numerical method for the explicit Runge-Kutta scheme.
In section 4.3 numerical results for the explicit scheme are presented and the
convergence level of the residual will be compared with results obtained with
other numerical methods in literature. In section 4.4 an implicit scheme is in-
troduced with which a machine accurate solution with the non-differentiable
minmod limiter can be obtained. Section 4.5 contains a discussion of the
numerical results for the implicit scheme and a comparison study of the fi-
nal residual levels obtained by the implicit and explicit methods. Finally, in
section 4.6 the conclusions are summarized.
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4.2 Governing equations and explicit numerical
method

In this section we state the equations governing inviscid compressible flow and
specify the time explicit numerical method. Although we are interested in
the steady solution for the flow around an airfoil we do not solve the time-
independent equations directly. Instead, we start from an initial condition and
use a time stepping scheme to obtain the steady solution.

4.2.1 Governing equations

The equations governing inviscid compressible flow are the Euler equations.
In Cartesian coordinates in two dimensions they read:

∂q

∂t
+

∂f

∂x
+

∂g

∂y
= 0 (4-1)

with

q =





ρ
ρu
ρv
E



 , f =





ρu
ρu2 + p
ρuv

u(E + p)



 and g =





ρv
ρuv

ρv2 + p
v(E + p)



 , (4-2)

where ρ is the density, E the total energy density and u and v are the velocity
components in x and y direction respectively. The constitutive equation for
the pressure, p, is given by

p = (γ − 1)
(

E − 1
2
ρ(u2 + v2)

)
, (4-3)

where γ is the adiabatic gas constant, which we take γ = 1.4.

4.2.2 Spatial discretisation

In section 2.3.1 the flux splitting scheme of Roe was described for a scalar
equation and extended to a system of equations in one dimension in section
3.3 by taking the hyperbolicity of the Euler equations into account. Here we
further extend the numerical method to the Euler equations in two dimen-
sions. To solve (4-1) we use a finite volume method on a structured grid that
computes the flux over the control volume edges as in figure 4-1

Ωi,j
dqi,j

dt
+ hi+ 1

2 ,j − hi− 1
2 ,j + hi,j+ 1

2
− hi,j− 1

2
= 0, (4-4)
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Figure 4-1: Control volume for grid point (i, j). The arrows denote the
normals on the edges.

where Ωi,j is the volume of the control volume and h is the numerical flux
vector on the four boundary segments (i + 1

2 , j) etc. The problem with the
two-dimensional Euler equation is that the flux Jacobi matrices corresponding
to the fluxes f and g cannot be diagonalized simultaneously. However, it
can be shown that every linear combination of the two Jacobi matrices is
diagonalizable [43]. In our simulations we consider the flux Jacobi matrix in
the normal direction which is defined as

A(q,n) = ∇q(f(q))nx +∇q(g(q))ny (4-5)

with n = [nx, ny]. In order to have a Roe type linearisation the same require-
ments as stated in section 3.3 have to be satisfied by A(q,n). The numerical
flux on the control volume edges is approximated by

hi+ 1
2 ,j =

1
2
li+ 1

2 ,j

[
f(ql) + f(qr)
g(ql) + g(qr)

]
· ni+ 1

2 ,j −
1
2
li+ 1

2 ,j |Ai+ 1
2 ,j| (qr − ql), (4-6)

where li+ 1
2 ,j is the length of the control volume edge, ni+ 1

2 ,j is the outward
normal on the edge, ql and qr are appropriate left and right state vectors,
the dot denotes the inner product and Ai+ 1

2 ,j is the combined flux Jacobi
matrix defined in (4-5). Similar to the one-dimensional case the flux in (4-6)
is evaluated with the so-called Roe average state-vector as defined in (3-5)
supplemented with the definition of vlr. To obtain a higher order accuracy
the MUSCL technique (see section 2.3.1) is applied to the conservative state
variables separately to obtain an improved approximation of ql and qr.
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4.2.3 Explicit time integration

For the time integration we use the second order accurate explicit four stage
compact storage Runge-Kutta scheme defined in section 2.4.1. The time step
of the explicit scheme is bounded for stability reasons and for the control
volume Ωi,j it is chosen according to

∆ti,j =
σΩi,j

max
(
li+ 1

2 ,jλi+ 1
2 ,j, li− 1

2 ,jλi− 1
2 ,j

)
+ max

(
li,j+ 1

2
λi,j+ 1

2
, li,j− 1

2
λi,j− 1

2

)

(4-7)

where σ is the CFL number and the λ’s are the maximum absolute values of
the eigenvalues of the flux Jacobi matrix on the corresponding control volume
edges.

To increase the rate of convergence of the explicit scheme we apply local
time stepping, i.e. each point is advanced according to its own stability time
step. In some calculations presented in this chapter we apply global time
stepping where a uniform time step is chosen equal to the minimum of all
local time steps.

4.2.4 Boundary conditions

For the flow around an airfoil there are two types of boundaries. The far
field boundary due to the finite extent of the computational domain and the
solid wall. In the far field we permit subsonic inflow or outflow. We use a
method which takes the incoming and outgoing characteristics into account.
Depending on whether the boundary is an inflow or outflow boundary we
extrapolate one or three Riemann invariants from the inner field and set the
remaining Riemann invariants to their values at infinity [74].

The only physical condition for inviscid flow over a solid wall is the im-
permeability of the solid wall which is equivalent to the normal velocity at
the solid wall being equal to zero. As numerical boundary conditions we ex-
trapolate the density, the tangential velocity and the pressure. Due to the
use of a C-grid the trailing edge becomes multi-valued. We therefore average
the values of the state vectors at the trailing edge after every stage of the
Runge-Kutta scheme.

To initialize the flow field, we set all dependent variables equal to their
values at infinity determined by the Mach number, M∞, and the angle of
attack, α.



64 CHAPTER 4

0.5 0 0.5 1 1.5
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 4-2: Enlargement of the C-grid around the NACA0012 airfoil.

4.3 Numerical results

In this section we present the numerical results obtained with the explicit
scheme for the well-known test case of inviscid flow around a NACA0012 airfoil
at M∞ = 0.8 and α = 1.25o [103]. With this combination of free-stream Mach
number and angle of attack the flow is transonic. The solution has a strong
shock on the upper surface of the airfoil, a weak shock on the lower surface
and a weak contact discontinuity in the wake. The grid we use is a C-grid with
289× 65 grid points where 160 points are located on the airfoil and 65 points
in the wake, see figure 4-2. The far field boundary is located at approximately
20 chord lengths from the airfoil. The CFL number for the time step used
here is CFL=0.6. In figure 4-3 a contourplot of the pressure shows a strong
shock on the upper side of the airfoil and a weak shock on the lower side of
the airfoil which is in agreement with the results in [15, 90]. The strong shock
on the upper side is captured with only one grid point in the shock which can
be seen in figure 4-4 where the pressure coefficient cp, defined by

cp =
p− p∞
1
2ρ∞U2

∞
, (4-8)

is plotted. The lift and drag, which are defined by

cl =
1

1
2ρ∞U2

∞L

∮
−p[−nx sinα + ny cosα]ds (4-9)
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Figure 4-3: Contourplot of the pressure for M∞ = 0.8 and α = 1.25o

using the MUSCL scheme.
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Figure 4-4: The pressure coefficient cp along the surface of the airfoil
for M∞ = 0.8 and α = 1.25o using the MUSCL scheme.
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Figure 4-5: Convergence history of the residual of the density with the
explicit method at M∞ = 0.8 and α = 1.25o with CFL=0.6.

and

cd =
1

1
2ρ∞U2

∞L

∮
−p[nx cosα + ny sinα]ds (4-10)

respectively where U∞ =
√

u2
∞ + v2

∞, L denotes the chord length of the airfoil
and α represents the angle of attack. We find for the values of the lift and
drag: cl = 0.348657 and cd = 0.021980. As can be seen in figure 4-5 the
solution does not converge to machine accuracy. This result is in agreement
with literature (see [89]). If we change the spatial discretisation from the third
order MUSCL scheme to the first order scheme of Roe or to the second order
scheme of Jameson [47] we do get a machine accurate solution, consistent with
the findings in [28]. Therefore, it appears that the lower amount of dissipation
in the MUSCL scheme (2-24) compared with Roe’s and Jameson’s scheme [15],
prevents the solution to converge to machine accuracy.

Another explanation for the fact that the convergence of the MUSCL
scheme stalls is the non-differentiability of the limiter function (2-26) [89, 90].
According to Ref. [90] this convergence stall is independent of the time step-
ping method. In the next section we, conversely, show that with a proper
implicit scheme we can achieve a machine accurate solution with the minmod
limiter.
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4.4 Implicit method

In the previous section we established that it is not possible to obtain a ma-
chine accurate solution with the explicit Runge-Kutta scheme in combination
with the MUSCL scheme and the minmod limiter. In this section we formu-
late an implicit factorization method which, as will be shown in section 4.5,
enables a decrease of the residual to machine accuracy.

The discrete version of (4-1) for the Euler backward scheme can be written
as

qn+1
i,j = qn

i,j −∆tFi,j(qn+1), (4-11)

where the superscript n labels the time level and Fi,j is the total numerical
flux in the grid point (i, j). The Euler backward scheme is first order accurate
in time, but this is not a concern here since we are only interested in the steady
state solution. First order Taylor expansion of F around qn yields

(
I

∆t
+

∂F

∂q
(qn)

)
∆qi,j = −Fi,j(qn) (4-12)

where ∂F
∂q is the symbolic representation of the Jacobi matrix of F and ∆qi,j =

qn+1
i,j −qn

i,j. For infinite∆t and an exact flux Jacobi matrix this scheme is equal
to Newton iteration for the problem F (q) = 0. However, it is not possible
to obtain the exact flux Jacobi matrix at a reasonable cost. Therefore, we
approximate the flux Jacobi matrix as in [98]. In view of the five point stencil
of Roe’s scheme in 2D we get a flux Jacobi matrix with five bands of 4 × 4-
matrices. The five blocks for a grid point (i, j) are given by

Di,j = A+
i− 1

2 ,j
−A−

i+ 1
2 ,j

+ A+
i,j− 1

2
−A−

i,j+ 1
2

Ni,j = A−
i,j+ 1

2
Si,j = −A+

i,j− 1
2

Ei,j = A−
i+ 1

2 ,j

Wi,j = −A+
i− 1

2 ,j
,

(4-13)

where D,N,S,E and W stand for diagonal, north, south, east and west con-
tribution. The delta formulation in (4-12) allows the use of an approximation
of the flux Jacobi matrix without changing the steady state solution. If the
iteration process converges it follows from (4-12) that the flux equals zero in
all grid points and hence the solution satisfies the time-independent discrete
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equations. The matrix on the left hand side in (4-12) can be rewritten as

I

∆t
+

∂F

∂q
=

(
I

∆t
+ D + N + S + E + W

)

=
(

I

∆t
+ D + N + E

)(
I

∆t
+ D

)−1 ( I

∆t
+ D + S + W

)

−(N + E)
(

I

∆t
+ D

)−1
(S + W ).

(4-14)

in which D,N,S,E and W are the contribution to ∂F
∂q from the corresponding

parts in (4-13). Neglecting the last term, which is O((∆t)2) compared to the
first term, we obtain the following implicit factorization scheme,

(
I

∆ti,j
+ D + N + E

)(
I

∆ti,j
+ D

)−1 ( I

∆ti,j
+ D + S + W

)
∆qi,j

= −F (qn
i,j) (4-15)

which is similar to the scheme used in Ref. [102], however, with a different
approximation of the flux Jacobi matrix: This system consists of a lower,
upper and diagonal matrix and can be solved in two steps.

(
I

∆ti,j
+ D + N + E

)
∆q∗

i,j = −F (qn
i,j)(

I
∆ti,j

+ D + S + W
)
∆qi,j =

(
I

∆ti,j
+ D

)
∆q∗

i,j

= −F (qn
i,j)−N∆q∗

i,j+1 −E∆q∗
i+1,j

(4-16)

The last line in (4-16) shows that this factorization method can be regarded as
two sweeps of the point Gauss-Seidel method where the direction in which the
variables are solved changes in the second sweep but no intermediate update
of the flux or the numerical flux Jacobi matrix is computed. Because of the
topology of the C-grid, the grid is cut into two parts separated by the wake
centerline and the stagnation line to retain symmetry for zero angle of attack
and a symmetric grid.

The boundary condition at the solid wall is treated explicitly in the same
way as for the explicit scheme. The far field boundary condition is treated
implicitly.

4.5 Numerical results for the implicit scheme

In this section we show results for the same test case as considered in section
4.3 but now obtained with the implicit method defined in the previous section.
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Figure 4-6: Convergence history of the residual of the density with
the factorization method and several CFL number for M∞ = 0.8 and
α = 1.25o.

A study of the difference of the residual between the explicit method and the
implicit method is also presented.

The time step for the implicit scheme is determined in the same way as
the stability time step for the explicit scheme. Local time stepping is used
to accelerate convergence. Since the Euler Backward scheme is A-stable we
increase the CFL number as much as possible. In theory it should be possible
to choose the CFL number infinite. We find that it is possible to increase the
CFL number considerably compared with the CFL number for the explicit
scheme. A threshold value of the CFL number of about 1000 is encountered,
above which no convergence takes place. The occurrence of such a threshold
in the CFL number can be due to the truncation error in (4-15) which has a
more pronounced effect if the time step increases. Another reason may be that
we do not treat the solid wall implicitly or the fact that the stability analysis is
based on a linearized equation. Also, the sensitivity of the dynamical system
on the time step may play an important role as is discussed in more detail in
section 6.6.

As can be seen in figure 4-6 the final residual level of the factorization
method depends on the CFL number. For large CFL numbers the convergence
is fast but a stall occurs. If we decrease the CFL number the convergence rate
and the final residual level decrease. Although a different method was used this
effect has also been observed in ref. [46]. For the choice CFL=1.5 we obtain
a machine accurate solution with the minmod limiter. Fast convergence to
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Figure 4-7: Convergence history of the residual of the density with the
factorization method for α = 1.25o and M∞ = 0.8 . The upper line is
calculated with CFL=1.5 and the lower with a combination of CFL=50
and CFL=1.5

machine accuracy can be obtained if we start with CFL=50 and switch to
CFL=1.5 when the solution reaches the minimum residual level for CFL=50.
In figure 4-7 it is shown that after the switch to the lower CFL number a
sharp drop of the residual occurs after which the evolution of the residual
becomes similar to a run with fixed CFL=1.5. The number of iterations needed
for machine accuracy is decreased by a factor 2 compared to the run with
CFL=1.5.

In (4-15) we use the NE-SW combination of the factorization. In a method
where the NE-SW factorization and the NW-SE version are applied alternat-
ingly the convergence rate increases for large CFL number but the final resid-
ual level remains the same. The threshold value for the CFL number does not
change either. For the choice of CFL=1.5 no convergence acceleration occurs
over the pure NE-SW method. Another version of the factorization method
is the NS-EW combination which is equivalent to the DD-ADI method de-
scribed in [7] . However, we do not obtain a machine accurate solution with
this method either.

When comparing the solution obtained with the explicit method and the
factorization method (4-15) with CFL=1.5 there is no difference in the lift and
drag up to at least six digits. The question that arises is what causes the differ-
ence in the final residual level between the two methods? Is it due to a physical
instability or is it a numerical phenomenon? To study the difference between
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Figure 4-8: Residual as a function of time after a restart with the
explicit scheme with CFL=0.6, α = 1.25o, M∞ = 0.8 and global time
stepping.
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Figure 4-9: Density in a grid point in the wake after restart with the
explicit scheme with CFL=0.6, α = 1.25o, M∞ = 0.8 and global time
stepping.
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the solutions we proceed from the machine accurate solution obtained with
the factorization method. We use this solution as initial state and continue
with the explicit method using global time stepping and CFL=0.6. Figure 4-8
shows that the residual after the restart has an exponential growth until it
reaches a level which is slightly lower than the final value of the residual in
figure 4-5 which is obtained with local time stepping.

In figure 4-9 the evolution of the difference in density in a specific grid
point in the wake region is plotted. Initially the solution appears almost
constant in time but as the dominant instability has sufficiently grown the
solution starts to oscillate with an exponential increase of amplitude until
the amplitude saturates. The oscillation appears to contain several different
frequency modes. The effects shown in figure 4-8 and figure 4-9 are very
similar to shear layer instabilities as studied in Ref. [12] and results found from
computations of a flow along a flat plate and in mixing layers as described in
Ref. [93]. This may indicate that we are dealing with a physical phenomenon.
The region where the amplitude of the oscillations is significantly different
from zero is bounded and located just behind the trailing edge where a contact
discontinuity exists due to a difference in tangential velocity above and below
the airfoil.

To exclude the effect of this discontinuity we have performed similar cal-
culations for α = 0o and M∞ = 0.8. The final value of the residual for the
explicit method is three decades lower than for α = 1.25o but again a stall in
the convergence arises. With the factorization method, however, a machine
accurate solution is obtained. A restart from the machine accurate solution
with the explicit method and global time stepping shows no increase of the
residual. Adding a random disturbance to the machine accurate solution of
the order 10−12 and restarting with the explicit scheme using global time step-
ping, however, we find an increase in the residual approaching the same level
as with uniform flow as initial condition.

In section 2.3.1 several parameters in the limiter function were introduced.
Changing the parameters results in a different spatial discretisation. Therefore
the dependence of the instability on the discretisation can be studied for a class
of discretisation schemes by varying the parameter ω. We study the effects on
the different limiter choices next. We have calculated the steady state solution
at α = 1.25o with the implicit scheme for various values of ω between 1 and 2.5
using a CFL number of 1.5. For ω = 1 we obtain a residual of the order 10−6,
for ω = 2.5 we obtain a residual of the order 10−9 and for ω = 1.25,ω = 1.5 and
ω = 2.0 a machine accurate solution is obtained. The case ω = 1 corresponds
to the original minmod limiter where the discontinuity of the derivative of
the limiter is situated in the special point (1, 1). The maximum value of the
limiter (2-29) for ω = 2.5 is equal to two, which is equal to the maximum
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value of the superbee limiter of Roe. It is known that the superbee adds a
minimum amount of dissipation compared to the other symmetrical limiters
making it less robust, which may explain why we do not obtain a machine
accurate solution for this choice of ω . For all other choices of ω the non-
differentiability is removed from a neighborhood of R = 1 (see section 2.3.1)
which seems to be a sufficient condition to obtain a machine accurate solution
with the implicit scheme.

Additional calculations for α = 1.25o and the Van Leer limiter are per-
formed to see whether the instability depends on the type of limiter. The Van
Leer limiter is defined as

Lim(a, b) =






|ab| + ab

a + b
if a + b (= 0

0 if a + b = 0.
(4-17)

To obtain the original Van Leer limiter the parameter ω is set to one in (2-24).
For a CFL number of 1.5 we obtain a machine accurate solution with the
implicit scheme. If we use this solution as initial data for the explicit scheme
the residual increases with the same growth rate as when the minmod limiter
is used with ω = 3

2 (see figure 4-8).
Finally, the implicit time integration is changed to the second order Crank-

Nicolson scheme, defined by

qn+1
i,j − qn

i,j =
∆t

2
(
Fi,j(qn+1) + Fi,j(qn)

)
(4-18)

for which the leading term in the truncation error is dispersive as is the case
for the Runge-Kutta scheme. The factorization scheme is used here as well to
solve the linear systems as in (4-14). The convergence behavior is similar to
the convergence behavior of the Euler Backward scheme with CFL=1.5 (figure
4-6), but the convergence stalls at the same level as the explicit scheme (figure
4-5).

Summarizing the results, we can conclude that we obtain a machine accu-
rate solution if too much numerical dissipation is added through the spatial
discretisation or time integration. For the schemes with minimal numerical
dissipation the convergence stalls at the final residual level of the explicit
scheme.

4.5.1 Grid refinement

Although there is a slight difference between α = 1.25o and α = 0o, both cases
show that the steady solution found with the implicit method is unstable.
This phenomenon may be caused by irregularities or coarseness of the grid.
Therefore we repeat the calculation for α = 1.25o on a coarser and a finer
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Figure 4-10: Residual as a function of time after a restart with the
explicit scheme with CFL=0.6, α = 1.25o, M∞ = 0.8 and global time
stepping for the three different grids where o is the original grid, f the
fine grid and c the coarse grid.

grid. The coarse grid, 145 × 33, is obtained by deleting every other grid line
in i and j direction. The fine grid, 577× 129, is obtained with a fourth order
two dimensional interpolation of the grid. For both grids we obtain a machine
accurate solution with the factorization method.

Restarting with the explicit method using global time stepping we find a
similar increase of the residual as on the original grid. The maximum value
of the amplitude and its location are on the fine grid close to the results on
the original grid. The instability phenomenon is also seen on the coarse grid.
However, the region where instabilities are prominent is almost the entire
region behind the airfoil which indicates that the grid is far too coarse. In
figure 4-10 the residual for the three grids after a restart is plotted. It shows
that the increase of the residual is maximal for the finest grid. This might be
due to the fact that the dissipation on a finer grid is lower and therefore the
strength of the physical instability is represented better.

4.5.2 Linear Stability Theory

In order to further substantiate these observations the stability of the solution
obtained with the factorization method is studied in the framework of linear
stability theory (LST) [61]. To this purpose the solution along a vertical line
through the wake is inferred from the available solution on the non-orthogonal
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Figure 4-11: βi as a function of ω̃ for a typical point in the wake for
the cases α = 0.0o (solid) and α = 1.25o (dashed)

grid using fifth order accurate interpolation. Consistent with LST the parallel
flow assumption is invoked and a perturbation q′ of the form

q′ = Real[φ̂(y)exp[i(βx− ω̃t)]], (4-19)

is determined where φ̂ = [ρ̂, ρ̂u, ρ̂v, T̂ ]. Here we introduce the wave number
β, the frequency ω̃ and the perturbation eigenfunction φ̂(y) which are related
to each other through a generalized eigenvalue problem with parameter β and
eigenvalue ω̃. In general both β and ω̃ can be complex. In literature it is
common practice to distinguish between temporal instability in which β is
real and ω̃ = ω̃r + iω̃i is complex and a spatial instability with β = βr + iβi

and real frequency ω̃. Here the spatial setting is most appropriate and a
small perturbation with frequency ω̃ is predicted to grow exponentially with
x, if βi(ω̃) < 0. Since there is no a priori known natural frequency ω̃ for the
instabilities in the wake we determine βi(ω̃) for a wide range of frequencies at
several x locations for the angles of attack α = 1.25o and α = 0o. We observe
that LST predicts both the α = 1.25o and α = 0o solutions to be unstable for
a wide range of frequencies in the region behind the airfoil, extending several
chord lengths.

In figure 4-11, the dependence of βi on ω̃ for a typical line through the
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wake is plotted for the cases α = 0.0o and α = 1.25o. The spatial growth rate,
βi, is about 8 times larger in the α = 1.25o case, which is consistent with the
strongly increased residual level which arises from a restart with the explicit
Runge-Kutta scheme compared to the much lower level found if α = 0o.

4.6 Conclusions

In this chapter we have shown that it is possible to obtain a machine accurate
steady state solution to the Euler equations with the minmod limiter and an
implicit time stepping scheme. We have applied an asymmetric version of the
minmod limiter which removes the non-differentiability in a region where the
quotient of the gradients of the solution of adjacent cells is near one. We argue
that the stall of convergence of e.g. a time explicit method for the specific flow
problem studied in this chapter is caused by a physical instability rather than
by the minmod limiter.

The final values of the residual obtained with the factorization scheme
depend on the CFL number. A threshold of CFL=1000 is encountered above
which the solution does not converge. Fast convergence to machine accuracy
can be obtained by starting with a high CFL number and then decreasing the
CFL number.

Comparison of the solution obtained with the explicit scheme and the im-
plicit scheme for two different angles of attack, α = 1.25o and α = 0o, shows
that the machine accurate solution of the implicit scheme is unstable. If we
change the limiter to Van Leer’s limiter (4-17), thus changing the spatial dis-
cretisation, we observe the same instabilities. Calculations performed with
the second order implicit Crank-Nicolson time integration show a stall in con-
vergence similar to the Runge-Kutta scheme which indicates that a machine
accurate solution can only be obtained if too much numerical dissipation is
added through either the spatial discretisation or time integration. For all
schemes with a small amount of numerical dissipation the convergence stalls.
A grid refinement study shows that the region of instability does not vanish
on a very fine grid. We have shown that this instability is also predicted by
linear stability theory for both angles of attack.

Although there is an instability in the mean flow, it is very weak and
relevant quantities such as the drag and lift are not affected within engineer-
ing accuracy. The lift and drag for the explicit method and for the implicit
method, with CFL number up to 100, are the same up to at least 6 digits.
Still, the results show that a stall of convergence is not always due to the
numerical scheme but may be caused by a small scale physical phenomenon
that cannot be observed if the numerical scheme is too dissipative.

Finally, large scale applications, e.g. three dimensional viscous computa-
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tions, with the factorization method require high memory usage and large
computation time. Therefore the performance on parallel platforms is of ma-
jor importance and this will be discussed in the next chapter.
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Chapter 5

Acceleration techniques for
steady flow computations

5.1 Introduction

Typical computational fluid dynamics problems require large numbers of floating-
point operations, and the wall-clock simulation time of a flow problem is an
important aspect in particular in relation to design optimization and various
other engineering applications. Therefore, efficient acceleration techniques are
an important topic of research in CFD. Different computer architectures, for
instance based on vector or scalar processors, favor different algorithms, and
consequently the choice of algorithm depends to some extent on the available
hardware.

In this chapter the properties of the implicit approximate factorization
method studied in chapter 4 are investigated further with respect to two types
of acceleration techniques: multigrid and parallelization. It is difficult to un-
derstand or even address the interplay of the physical instability observed in
the previous chapter and the solution process, especially when multigrid is in-
volved, because the effect of the instability on the convergence behavior may
depend very sensitively on the grid level. Also for the parallelization, where
we use a spatial domain decomposition, the interplay between the number
of domains, local accuracy and the instability is not clear. Therefore, these
topics form key items of interest in this chapter.

This chapter is organized as follows. In section 5.2 we briefly describe
the results of multigrid acceleration. In section 5.3 we discuss the paralleliz-
ability of the implicit inviscid flow solver. Because the prospects of a solver
for the Navier-Stokes or Euler equations are determined by its actual perfor-
mance on current or future computers, the competition between implicit and
explicit methods is influenced by the increased availability of parallel comput-
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ers. So far, explicit methods have benefited most from the developments in
computer hardware, because the repetition of many, simple instructions with-
out recurrence is well suited for vector processing, and the sole dependence
on data from the previous time step is easily handled on parallel computers
by supplying copies where needed. The parallelization experiments described
in section 5.3 indicate that a good parallel performance can be expected for
the implicit solver described in this chapter as well, because the solver is not
too sensitive to approximations made to enable parallel execution. In this
research we will focus on spatial domain-decomposition techniques as in Ref.
[33]. The reason for this is that implementation on both shared memory sys-
tems and distributed memory systems is fairly easy, and it should be possible
to achieve comparable parallel performance on both types of parallel architec-
tures. Because the domain-decomposition approach described here affects the
convergence rate towards the steady state, in contrast to most explicit multi-
block algorithms, (theoretically) perfect scaling with the number of processors
is not achieved. The parallel efficiencies, however, seem sufficient for practical
purposes.

The simulations described here concern the well-known test case of inviscid
flow around a NACA0012 airfoil at a free-stream Mach number of M∞ = 0.8
and an angle of attack of α = 1.25o, which is discussed in more detail in sec-
tion 4.3. Several test computations for different free-stream conditions were
performed which confirm the conclusions from the results for the specific test
case selected in this chapter. The case M∞ = 0.85, α = 1.0 with stronger
shocks, the subsonic case M∞ = 0.63, α = 2.0 without shocks and the su-
personic case M∞ = 1.2, α = 7.0 all produced convergence histories with the
same characteristics as found for the case M∞ = 0.8, α = 1.25. Therefore, in
the main part of this chapter we will restrict the presentation of the results to
this case.

In all simulations described in this chapter, the coefficients of drag Cd and
lift Cl are found to be equal up to at least six digits, so we will only consider
the residuals and the convergence histories in this investigation. We will oc-
casionally refer to the time-stepping towards the steady state as ‘convergence
of the outer iteration’, which should be distinguished from any (‘inner’) iter-
ative method used to solve the linear system of equations at each time step
as defined in (4-15). In general, the convergence towards the steady state can
be rated according to the number of time steps required, or according to the
overall computing time.
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5.2 Multigrid acceleration

In chapter 4 we showed the increased convergence rate towards the steady state
of the implicit method compared to the explicit time-integration method, the
latter being limited to small CFL numbers for numerical stability reasons. A
popular approach to accelerate the convergence towards the steady state for
explicit Runge-Kutta time-stepping is the application of a multigrid technique
(see e.g. [16, 52]). A first and obvious question is how the convergence of the
present implicit solver compares to these accelerated explicit Runge-Kutta
methods. Therefore we briefly address the application of implicit and explicit
time-stepping in combination with multigrid.

We applied a multigrid technique as described in section 2.6 which was
already used in Refs. [16, 52] in conjunction with an explicit time integration
method. In this method, nonlinear multigrid is applied to solve q from the
steady Euler equations in (4-1), which can be written as a system of coupled
nonlinear equations as in (2-42) by

H(q) = 0 (5-1)

As a relaxation mechanism on the successive grids we use (pseudo) time-
stepping for the unsteady Euler equations, as this will push the solution to-
wards the solution of (5-1). Both explicit Runge-Kutta schemes and the Euler
Backward time-stepping method described in chapter 4 can be used as time-
stepping techniques.

This multigrid method is different from a multigrid technique where the
approach is solely used to accelerate the solution of the linear system (4-15) in
each time step, as described in [65]. In our implicit Euler Backward scheme,
application of a multigrid method to solve the linear system is not attractive,
because we only have an approximate Jacobi matrix, and accurate solution of
the linear system will not pay off (see section 5.3.2). The multigrid method
used in this chapter is closely related to the work reported in [42]. However, in
[42] only first order spatial discretisation is applied, and the relaxation method
is not based on (pseudo) time-stepping.

In our multigrid method the solution is restricted to coarser grids by injec-
tion, and the defect vector by full weighting. The correction to the solution is
prolonged to the finer grid by bilinear interpolation. With this choice of the
intergrid operators the approximation property is satisfied [38]. The initial
solution is improved with Full Multigrid, and each multigrid W-cycle follows
the Full Approximation Scheme.

It is known from the literature (see Van der Burg [15]) that the multigrid
method does not converge very well for the Euler equations with the MUSCL
scheme and several explicit compact storage Runge-Kutta time-stepping schemes.
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This is confirmed by our findings. In figure 5-1 a result is shown for the
four-stage explicit Runge-Kutta scheme (2-36) and CFL number of 0.6. The
speedup in convergence rate compared to the single-grid computation is con-
siderable, but the final residual level is not as low as in the single-grid explicit
computation, and convergence itself is only attained for carefully chosen num-
bers of coarse-grid, pre- and post-relaxations. On the other hand, the implicit

500 1000 1500 2000 2500

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

re
si

du
al

CPU time (s)

expl cfl=0.6 no MG 
expl cfl=0.6 MG    
impl cfl=6.0 MG    
impl cfl=50.0 no MG

Figure 5-1: Convergence of the multigrid technique applied to attain
the steady state of the Euler equations.

method (e.g. at a CFL number of 50) is also accelerated by the multigrid pro-
cess, but is more robust and convergence arises for a wide range of multigrid
parameters and CFL numbers. Again, the final level of the residual depends
on the CFL number, but the level found here is well below the final level of the
explicit Runge-Kutta scheme of figure 5-1, which is sufficient for engineering
accuracy. By choosing different grid levels for the finest grid, we also found
the convergence rate to be grid-independent. We observe that the multigrid
acceleration is only about a factor two to four depending on the CFL number
whereas for these types of problems a speed up factor of 10 is typically found
(see e.g [52]). However, this appears to be related to the spatial discretisation.
Here we use the MUSCL scheme where in most cases the more dissipative
Jameson scheme is used as in [52]. With the Jameson scheme we also found a
higher speed up factor comparable to the speed up factor mentioned above.

These results were confirmed by test computations for different free-stream
conditions. The case M∞ = 0.85, α = 1.0 with stronger shocks, the subsonic
case M∞ = 0.63, α = 2.0 without shocks and the supersonic case M∞ = 1.2,
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α = 7.0 all gave convergent multigrid processes when implicit time-stepping
was used. The final residual levels and the convergence rates were found to be
dependent on the CFL number as in the single-grid computations.

These results show that the implicit scheme has better smoothing proper-
ties than the explicit Runge-Kutta scheme [97]. The dissipation in the implicit
scheme is sufficient to ensure a convergent multigrid process. For higher-order
TVD schemes and explicit time-stepping, the special treatment of defect cor-
rection may be required to reduce the residuals at all, as found by Van der
Burg [15]. (For a discussion of the application of defect correction, see e.g.
[54].) It is noted that the problems with multigrid are typical for the use of a
higher-order TVD scheme such as the MUSCL scheme employed in this chap-
ter. For more dissipative spatial discretisations, such as the popular second-
order Jameson scheme, rapidly convergent multigrid methods are more readily
obtained, also with explicit time-stepping schemes.

For a proper comparison of the implicit and explicit time-stepping meth-
ods as smoothers for multigrid, explicit Runge-Kutta schemes other than the
compact storage scheme of (2-36) should be tested as well. Tests with the
five-stage scheme proposed by Jameson [49] gave no significant improvement
of the convergence behavior, which can be understood because the damping of
high frequency components is similar for this scheme [52]. This chapter aims
at demonstrating the power and simplicity of the implicit scheme. The appar-
ent robustness of the multigrid process without multigrid parameter study or
defect correction, is an appealing feature of the implicit scheme.

5.3 Parallelization

All previous simulations were performed on a single processor. Convergence
acceleration compared to an explicit method was achieved first (chapter 4)
by using an implicit method whereas in section 5.2 the multigrid method
was applied to accelerate the convergence for both the explicit and implicit
method. In this section we focus on parallelization as acceleration technique.
The concept of parallelization is very simple, dividing the work over multiple
processors decreases the wall clock simulation time. However, in practice this
is not so simple and a good parallel performance depends on a lot of parameters
such as e.g. computer architecture and parallelizability of the algorithms.

According to the parallel version of Amdahl’s law [79], the parallel perfor-
mance is limited by the fraction of the program that is necessarily sequential.
This can be shown as follows. Assume that a fraction β of the computational
work is parallelizable and that a fraction (1−β) is essentially sequential. Fur-
ther assume that all CPU’s achieve the same Mflop rate, then the total CPU
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time is given by

Tp = (1− β)T1 +
βT1

p
(5-2)

where T1 stands for the execution time with one CPU, p is the number of
processors involved in the parallel part of the computational work and Tp is
the total execution time on p processors. For the speed-up factor we find

Sp =
T1

Tp
=

1
1− β + β

p

≤ 1
1− β

(5-3)

Clearly the maximum speed-up is bounded by the part of the computational
work that is essentially sequential and not by the number of participating
CPU’s. The sensitive dependence of the speedup factor Sp on the paralleliza-
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Figure 5-2: Speed-up factor, Sp, and efficiency, Ep, as a function of the
number of processors for various parallelization fractions β.

tion parameter β is illustrated in figure 5-2. In figure (a) the speed-up factor
(5-3) is plotted as a function of the number of processors for various paral-
lelization factors β. The solid line represents the perfect scaling with respect
to the number of CPU’s, corresponding to β = 1. Clearly, if 99% of the
computational work is parallelizable the deviation from the perfect scaling
is already significant for large p. If the fraction β decreases this deviation
rapidly becomes larger. Defining the efficiency, Ep, of a CPU by Ep = Sp/p
this effect is clarified further in figure 5-2 (b). A small decrease in β results
in a considerable decrease of the efficiency per CPU. The above results show
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that parallelization is not as trivial as it looks at fore hand and good parallel
performance is only achieved for values of β very close to 1.

In order to establish the theoretical parallel performance of an implicit
solver as compared to the parallel performance of an explicit solver, it is suf-
ficient to consider only that part of the implicit program that is essentially
different from its explicit counterpart. The implicit program has three stages:
the calculation of the Jacobi matrix and the numerical flux corresponding to
the old solution, the matrix inversion, and the calculation of the new solution.
Because the calculation of the Jacobi matrix is very similar to the calculation
of the numerical flux, the first and third stages in the implicit algorithm do
not differ in nature from any flux calculations in explicit programs. These
stages can be done in parallel as in every explicit method with spatial domain
decomposition. Therefore, for our present goal it is sufficient to consider only
the solving phase (4-16) of the implicit factorization method to establish the
theoretical parallelizability. On a single processor and in the present imple-
mentation this stage takes about thirty percent of the total computation time
for each time step. If this portion is not parallelizable, this would lead, accord-
ing to Amdahl’s law, to a maximum speedup of 3 on any parallel computer,
which would be a severe limitation on the performance of the solver.

5.3.1 Domain decomposition

Domain-decomposition methods have gained wide acceptance in solving the
compressible Navier-Stokes or Euler equations. The suitability for paralleliza-
tion is clear because of the presence of coarse grained loops over the subdo-
mains in the program. These loops over the subdomains are usually limited in
number and contain sufficient work to make parallel overhead relatively unim-
portant. Also, the possibility of local data storage is attractive, especially on
distributed systems. Locality of data in this context means that the required
data reside in the local memory associated with a processing element for the
duration of the computation, with only exchange of data at the ‘boundaries’
of the subdomains.

The calculation of the Jacobi matrix and the fluxes can be done with
domain decomposition in a familiar way, by introducing dummy points. It
seems worthwhile if the matrix inversion part can be treated similarly, because
then all the important subroutines of the program can compute with local data,
with only boundary data exchange at appropriate stages.

In the sequential version of the matrix inversion, we cover the grid typi-
cally by starting at a far-field point, e.g. a far-field corner point or the far-field
point in the wake, and traversing the field systematically, taking at each point
the values of the neighboring points into account. In this way at each point,
two out of four neighboring points have been updated already. In the second
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stage of (4-16), the field is crossed in the opposite direction. This has no
advantage for parallel execution, because, if standard domain decomposition
is applied, each processor has to wait until the processor of the neighboring
domain has completed its computations. Nevertheless, domain decomposition
is attractive, especially when other parts of the program, for instance the flux
calculation, already use domain decomposition for parallel execution. This is
in contrast to a parallel computation in which the grid points are renumbered,
such as the ‘wavefront method’, which is designed to solve tridiagonal systems
similarly to the method used to solve (4-16) in this chapter. The wavefront
method does give the correct results, but the method is not scalable, because
at the beginning and at the end of the sweeps some processors are idle. Other
disadvantages are that the data must be divided over the processors in a differ-
ent way, taking less advantage of the structured grid, and that synchronization
takes place after each wavefront line calculation.

Instead we choose the simplest form of domain decomposition, by ignoring
the errors made at the subdomain boundaries, and start the iteration in each
subdomain independently of the other subdomains. This does not affect the
quality of the obtained steady state solution. If the iteration process converges
to a sufficient level the accuracy is determined by the spatial discretisation and
not by the iteration process. To obtain the closest resemblance with the perfor-
mance of the sequential code, we seek the best way of crossing the grid when
solving (4-16). We found that the best results with respect to convergence
rate and final residual level are obtained when the domain-decomposed field is
crossed by starting from opposite corners in each pair of adjacent subdomains
in the first stage, exchanging boundary data with the neighboring subdomains
after completing the first sweep, and then proceeding in the opposite direc-
tion, returning to the starting point. This is depicted in figure 5-3. Thus the
field is traversed in a ‘continuous’ manner, in the sense that after each sweep
each block starts with new values, either because of a flux and Jacobi matrix
update after a whole time step, or because new values have been ‘supplied’ by
the neighboring block.

However, if the number of subdomains is larger than two, the two sweeps
of the iterative process do not cover the entire grid, as the information from
the boundaries travels only across two adjacent blocks after two stages. This
is likely to influence the overall convergence of the method. Because the gain
of parallel computation may outweigh this loss of convergence, it is necessary
to study the convergence rate for several domain divisions.

5.3.2 Numerical results

In this section the convergence behavior for several domain divisions is in-
vestigated. Since we are mainly interested in the convergence behaviour the
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Figure 5-3: First stage in the traversal of the C grid in the factorization
method with domain decomposition. In the second stage the arrows are
reversed. The grid is shown in the computational domain. The dark grid
points on the domain boundary are joint points in the wake behind the
airfoil.

simulations are performed on a single CPU. Finally, the actual parallel per-
formance is demonstrated on a Cray T3E distributed memory computer. We
studied the convergence for several divisions up to a total of sixteen sub-
domains, where the number of subdomains is varied in both the i- and the
j-direction. Possible block lines in the wake region were chosen to be continu-
ous across the wake line. The block divisions are indicated as ni×nj, ni being
the number of divisions in the i-direction and nj the number in the j-direction.
The division in figure 5-3 is 3×3.

In figure 5-4 convergence histories are plotted for various subdomain divi-
sions. The fastest convergence is achieved with the 1×1 single-block division
as expected. The convergence deterioration for different subdomain divisions
is, however, rather small.

The domain decomposition is seen to have two effects. Firstly, the conver-
gence rate is somewhat smaller if more subdomains are used. Moreover, faster
convergence is obtained with more divisions in the i direction than in the j
direction. This suggests that the convergence-rate deterioration is related to
the number of interface points created by the subdomain division: because of
the 289×65 grid, a single bisection in the j-direction creates a larger boundary
portion than a bisection in the i-direction.

Secondly, the final convergence level may occasionally deviate considerably
from the expected value. In figure 5-4 the simulations with 5 × 1 and 2 × 2



88 CHAPTER 5

0 200 400 600 800 1000 1200 1400
10 8

10 7

10 6

10 5

10 4

10 3

10 2

re
si

du
al

time steps

(a) domains in i-direction

0 200 400 600 800 1000 1200 1400
10 8

10 7

10 6

10 5

10 4

10 3

10 2

re
si

du
al

time steps

(b) domains in j-direction

Figure 5-4: Convergence behavior of the approximate factorization
method at a CFL number of 50 a) for domain divisions 1×1, 2×1, 4×1,
5×1, 8×1 and 16×1 and b) for domain divisions 1×1, 2×1, 2×2, 2×4, and
2×8. The fastest convergence is obtained with the 1×1 division (most
left curve in both figures a and b). Note the two simulations 5×1 and
2×2 with different final residual level.

result in a higher residual level. It is not well understood why this occurs for
these specific domain decompositions. However, it is undesirable that the final
results are influenced by the block division and thus this problem should be
eliminated. The solution to this problem is obtained from the fact that the
approximate factorization method gives a solution of the linear system only
approximately. Our computations (we will come to this point shortly) suggest
that the solution of the linear system with approximate factorization is just
accurate enough to retain convergence. The difference between the single-
block grid and the domain-decomposed grid is that for the latter internal
block boundary points are treated with Jacobi relaxation instead of Gauss-
Seidel relaxation in the first sweep, so that the accuracy required for fast
convergence behavior is no longer attained. This suggests that we should
solve the linear system more accurately when more blocks are used. To obtain
a more accurate solution we first experimented with four Gauss-Seidel sweeps
rather than two in the standard approximate factorization method (4-16). The
results have been plotted in figure 5-5a, where the residual of the density has
been plotted as a function of the number of outer iterations for several domain
divisions.

At the cost of more CPU time per outer iteration step, the simulations in
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Figure 5-5: Density residual a) as a function of the number of outer
iterations (time steps) and b) as a function of CPU time, for various
domain divisions, but calculated with four Gauss-Seidel sweeps per outer
iteration. The solid line (most right in figure a) is the single-block line
of the approximate factorization method with two Gauss-Seidel sweeps.
The different subdomain divisions can hardly be discerned.

figure 5-5a display a more favorable convergence behavior than the simulations
in figure 5-4a with the same block divisions. Firstly, the convergence stall is
eliminated, which was the principal goal. Secondly, the convergence towards
the steady state requires fewer time steps, and the convergence rate (in terms of
time steps) is also less influenced by the domain decomposition. If the residual
level is plotted as function of the CPU time instead of time steps, we even see
that the improved convergence behavior comes with no extra computational
costs (figure 5-5b).

The convergence rate of the residual is dependent on the accuracy of the
solution of the linear system. To quantify this, we introduce the relative error
εrel in the solution ∆q as

εrel =
||M ·∆q + H||

||H||
, (5-4)

where || · || is the discrete L2 norm of the state vector over the entire grid
and M∆q represents the left-hand side of (4-15). We have repeated the com-
putations with increasing number of Gauss-Seidel sweeps until a prescribed
relative error εrel is reached at each time step. In figure 5-6a the convergence
history is plotted as a function of outer iteration steps and in figure 5-6b as
a function of the CPU time for a single CPU. Figure 5-6a shows that we
cannot improve the convergence rate indefinitely by solving the linear system
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Figure 5-6: Density residual a) as a function of the number of outer
iterations (time steps) and b) as a function of CPU time, for increasing
accuracy of the solution of the linear system.

of equations more accurately, partly because the linear system contains only
an approximation of the exact Jacobi matrix (see, e.g., Venkatakrishnan [89]
or Tan [84], and references quoted therein). An optimal accuracy regarding
computational performance is found for εrel between 0·1 and 0·5. Between
these numbers the actual CPU time is of the same order of magnitude (figure
5-6b). This relative error range corresponds to roughly one to six Gauss-Seidel
sweeps. Because, apparently, a large relative error in the solution is allowed,
the use of sophisticated linear solvers like GMRES or Conjugate Gradient
methods [8] will probably not be very rewarding in view of CPU costs.

To demonstrate the effectiveness of the Gauss-Seidel relaxation (see section
2.5) we plotted the relative error εrel as a function of the number of sweeps
or “iterations” in figure 5-7 for Red-Black relaxation (see e.g. [79]) and for
point Gauss-Seidel methods with different sweep directions. From this figure
it is clear that the alternating or symmetric Gauss-Seidel method is most
efficient in reducing the error in the solution of the linear system, although the
asymptotic convergence rates of the displayed methods are not very different.
This shows that, because of the modest accuracy that is required for the
implicit method described in this chapter, the efficiency of linear solvers in
this context is determined by their performance in the initial sweeps, and not
by their asymptotic convergence rate.

We verified that, as long as the relative error as defined by (5-4) is pre-
scribed, the outer convergence rate, i.e. the required number of time steps
towards the steady state, is retained, even if different approximate linear
solvers, like for instance Red-Black relaxation, are used. Moreover, it was
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Figure 5-7: Relative error εrel as a function of the number of iterations
for Red-Black relaxation and for point Gauss-Seidel relaxations with dif-
ferent sweep directions. Note that one Red-Black relaxation is defined
as the treatment of both the “red” and the “black” points. In this plot
the alternating (or symmetric) Gauss-Seidel relaxation is most efficient.
Note that two iterations of Symmetric Gauss-Seidel correspond to the
original “approximate factorization” approach.

checked that, if domain decomposition is applied and εrel is prescribed rather
than the number of Gauss-Seidel relaxations, both the outer convergence rate
and final convergence level are preserved for all subdomain divisions, although
possibly now at the price of more Gauss-Seidel relaxations.

We remark that the results of this section indicate that the use of square
subdomains in computational space is favorable for the total computation
time. We have seen that the loss of convergence rate is mainly due to a less
accurately solved linear system. Because domain decomposition introduces
internal boundary points which are treated with Jacobi rather than Gauss-
Seidel relaxation, on average more relaxation sweeps are required to obtain the
same solution-vector accuracy. Therefore, subdomain divisions with the least
number of internal boundary points, i.e. square subdomains, are favorable
(this was already mentioned to explain the preference for bisections in the
i-direction rather than in the j-directions). Although it is not inconceivable
that the flow geometry introduces some preference direction for subdomain
divisions, the present results suggest that the numerical error caused by the
simplified treatment of internal boundary points is proportional to the number
of internal boundary points, and outweighs any physical preference direction.
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To demonstrate the parallel performance, parallel computations were done
on a Cray T3E distributed memory computer. As an example we show the
performance for domain decomposition with subdomain divisions only in the
i-direction, the number of subdomains matching the number of processors
exactly. In the case of 32 CPUs this is hardly optimal, because the subdomains
are far from being square, but the performance is still quite good for this
relatively small problem, as shown in figure 5-8.
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Figure 5-8: Parallel speedup as a function of the number of CPUs on
the the Cray T3E. The domain decomposition was only done in the i-
direction, and the number of subdomains was chosen equal to the number
of processing elements.

5.4 Conclusions

In this chapter we discussed the multigrid and parallel performance of an im-
plicit solver for the compressible Euler equations based on a quasi Newton
iteration and an approximate factorization method. It is found that the con-
vergence of the outer iteration is determined by the accuracy of the solution
of the linear system that results from the quasi-Newton iteration, and that
“approximate factorization” is a cheap, two-stroke point Gauss-Seidel method
to solve the linear system of equations with sufficient accuracy. The relative
error εrel defined by (5-4) is a suitable measure for outer iteration control when
different linear solvers are used. Because the accuracy required to achieve con-
vergence is low, the high efficiency of the initial sweeps of the alternating point



Acceleration techniques for steady flow computations 93

Gauss-Seidel relaxation pays off. It was found that Red-Black relaxation for
this problem is between two or three times less efficient than Gauss-Seidel.

With straightforward domain decomposition a parallelizable multiblock
code is obtained with roughly the same convergence rates as the single-domain
problem. As discussed in the introduction, the convergence rate and final level
of residuals depend on the CFL number. The domain-decomposition method
affects the accuracy of solving the linear system of equations resulting from
the quasi Newton method. By prescribing a fixed accuracy of the solution
of the linear system, we retain the convergence rate and the final residual
level of the Euler Backward time-stepping for the single block code. Although
not mentioned in section 5.3.2 divisions up to 50 subdomains and more were
checked to have no serious effect on the overall computation time. This does
not only increase the theoretical performance of the solver, but the apparent
insensitivity to the domain decomposition is also promising for cases where
the geometry is less simple.

In the introduction it was mentioned that perfect scaling with the number
of processors is not achieved. Should this cause any problems, it is possible to
turn to different iterative solution methods of the linear system, such as the
Red-Black method. With this method, if communication costs are neglected,
perfect scaling is possible, because for each subdomain division the same nu-
merical problem is solved. Experiments with different relaxation methods
show that, as long as the linear system is solved with the same accuracy, sim-
ilar convergence behavior is found with respect to the number of time steps
required and the final residual level.

The implicit time-stepping method described here is also very suitable
when it is used as a multigrid smoother. Convergent multigrid results are
found quite robust and can be obtained without any careful multigrid param-
eter study, in contrast to multigrid with explicit Runge-Kutta time-stepping,
for which convergence depends sensitively on the multigrid parameters. The
overall speed up factor is not spectacular which appears to be related to the
spatial discretisation.

Although in this chapter we studied inviscid flow with the Euler equations,
we expect similar results for the compressible Navier-Stokes equations with
respect to parallelization. In chapter 6 a fully implicit scheme is applied to
an unsteady two-dimensional shock boundary-layer interaction flow over a flat
plate. For this implicit method the main difference with the present implicit
method applied to the inviscid flow lies in the contribution of the viscous flux.
In [82] it was shown by Streng et al. that the calculation of the viscous flux
is highly parallelizable so we expect a good parallel performance of the fully
implicit method as well. Also, extensions to three-dimensional problems will
not pose problems regarding the algorithm. In [71] a similar numerical method
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was successfully used for 3D Navier-Stokes involving implicit time-stepping,
quasi-Newton’s method and factorization.

With respect to the multigrid method the extension to the Navier-Stokes
equations is not so straightforward. In chapter 7 we show that no multigrid
acceleration may be expected due to the natural unsteadiness of the flow.



Chapter 6

Shock boundary-layer
interaction flow

6.1 Introduction

Due to the recent development in computer capacity, numerical methods and
turbulence models, numerical simulation of complex unsteady flow has come
within reach. Examples are the simulation of unsteady viscous flow modelled
by the Reynolds-averaged Navier-Stokes equations and direct numerical sim-
ulation (DNS) and large-eddy simulation (LES) of turbulent flow. In the past
efficient numerical methods have been developed for the calculation of steady
flows. Usually the flow equations are advanced in time starting from an ar-
bitrary initial condition using an implicit or explicit time integration method
supplemented with convergence acceleration techniques. As only the steady
solution is required the accuracy with which the time integration is performed
is not an issue. However, if unsteady flow is simulated the accuracy of the time
integration has to be considered and many efficient methods for steady flow
simulation can no longer be applied in a straightforward way. Explicit meth-
ods, in which the time step is restricted by numerical stability requirements,
may become practically useless in particular if a large resolution is required in
directions normal to solid walls. On the other hand, in A-stable implicit meth-
ods, where the time step is not restricted by stability, accuracy considerations
should determine the magnitude of the time step. Depending upon the “accu-
racy time step” an implicit method may or may not be more efficient than an
explicit method. Ultimately, one would like to determine the accuracy time
step dynamically during a simulation and possibly switch between explicit
and implicit time integration schemes depending on the necessary accuracy
and efficiency, as the flow develops.

As a first step towards such a dynamical time step determination we study

95
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in this chapter a DNS of a two-dimensional unsteady shock boundary-layer
interaction flow over a flat plate under an adverse pressure gradient. We use
both an explicit Runge-Kutta method and the implicit Crank-Nicolson scheme
and study the following questions. How large can the time step be chosen in
order to resolve the unsteady solution accurately? How accurate should the
nonlinear system of equations in each time step be solved and how sensitive
does the prediction of different flow quantities, such as mean quantities and
instantaneous quantities, depend on these numerical parameters? Is it possible
to solve the nonlinear set of equations at each time step and for all relevant
step sizes? What implicit method is computationally efficient?

In the selected test case the unsteadiness is caused by the interaction of
the boundary layer with shocks that arise in the flow [14]. These phenomena
combine into a rather complex unsteady flow which makes it an appropri-
ate model for the present study. Simultaneously, it has some importance for
various situations of practical interest like transonic flight conditions or a com-
bustion ramjet. Furthermore, in this flow the time step required for temporal
accuracy is relatively large compared to the stability time step of an explicit
scheme so that an implicit scheme could become computationally competitive.
However, we emphasize that the particular flow and numerical method studied
here are only examples. The approach proposed can be applied to more gen-
eral unsteady flows and is particularly useful for unsteady RaNS simulations
where the stability time step of explicit methods is very restrictive (see e.g.
[6]).

In the past a lot of work has been done concerning the questions which
were mentioned above. In Ref. [69] a 2D turbulent flow around a pitching
airfoil was considered. The time accuracy of these simulations was validated
by varying the number of time steps per period of the pitching frequency. A
pseudo time derivative was added to facilitate the solution of the nonlinear
set of equations to be found each time step. The required convergence level
needed at each pseudo time step was investigated by focussing on some typical
flow quantities. In Ref. [24] a similar two- and three-dimensional unsteady
flow around a 2D airfoil and 3D wing was considered. An application which
is more closely related to the present flow is the DNS performed in Ref. [71]
concerning a spatially evolving 3D turbulent boundary layer. In that study an
implicit time integration scheme was used to follow the evolution of the flow
in time. The number of time steps per period of the disturbances introduced
at the inflow boundary used by these authors was 600. A fixed number of
iterations was performed for the nonlinear system at each time step. The
validation of this number of iterations was done by comparing the solution
obtained with 2, 3 and 4 iterations per time step. In Ref. [6] the thin-layer
Navier-Stokes equations are solved for a shock-induced oscillatory flow over
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an airfoil. This flow is unsteady without any external unsteady driving effect
which is also the case for the flow simulated in this chapter. The temporal
accuracy is studied by varying the number of time steps per period of the
natural oscillation of the shock.

The flow studied in this chapter is unsteady due to the specific properties
of a steady blowing and suction profile [96] at the upper boundary of the
computational domain where we prescribe the normal velocity. In contrast to
Ref. [6] we cannot relate the time accuracy to the temporal behavior of the
external flow condition, as in the examples described above, since we do not
prescribe any explicit external flow unsteadiness. Therefore we need another
criterion to determine a suitable time step. For this purpose we determine
the global error caused by the spatial discretisation and use this as an upper
bound for the global error due to the time integration. The global error not
only depends on the magnitude of the time step but also on the accuracy
with which the nonlinear system arising at each time step is solved and to
some extent also on the relaxation method that is used to obtain or accelerate
convergence. The obvious demand that the global error should decrease if
at each time step the solution is determined more accurately, results in a set
of requirements that relate the above mentioned numerical parameters. The
specific construction of a stopping criterion that determines the local accuracy
turns out to be a key factor in order to satisfy this demand on the global error.

The contents of this chapter is as follows. In section 6.2 we state the
governing equations and the numerical method using the explicit Runge-Kutta
scheme. In section 6.3 we present the numerical results obtained with the
explicit method which are used as a reference solution for the implicit time
integration method which is introduced in section 6.4 . Section 6.5 contains a
discussion on the global error bounds for the implicit time integration scheme
and the stopping criterion. Numerical simulations for the implicit scheme are
presented and the resulting accuracy is evaluated with respect to the explicit
reference solution. The convergence problems arising at large time steps are
addressed in section 6.6 and a connection is made with classical chaos theory.
Finally, in section 6.7 the conclusions are summarized.

6.2 Governing equations and explicit numerical
method

In this section we state the equations governing viscous compressible flow and
include the viscous contribution to the explicit stability time step defined in
section 4.2.3.
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6.2.1 Governing equations

The governing equations for two-dimensional compressible viscous flow are the
Navier-Stokes equations. In conservation form and Cartesian coordinates they
read

∂q

∂t
+∇ · (fc − fv) = 0 (6-1)

with q = [ρ, ρu, ρv,E]T and where fc and fv denote the inviscid and viscous
fluxes respectively. The inviscid flux is given by fc = [f, g] where f and g are
defined in (4-2) and the viscous flux is given by

fv =





0 0
σxx σxy

σyx σyy

(uσxx + vσxy + kTx) (uσyx + vσyy + kTy)



 (6-2)

The heat conductivity k equals

k =
1

Pr(γ − 1)M2
∞

µ

Re
(6-3)

where µ is the non-dimensional viscosity, Pr the Prandtl number, γ the adi-
abatic gas constant, M∞ the Mach number at infinity and Re the Reynolds
number to which we return shortly. Here we use Pr = 0.72 and γ = 1.4. The
temperature T is related to the density ρ and the pressure p by the ideal gas
law

T = γM2
∞

p

ρ
(6-4)

The dimensionless viscosity µ is related to the temperature T by Sutherland’s
law,

µ(T ) =
1 + C

T + C
T

3
2 (6-5)

where we use C = 0.4 which corresponds to a reference temperature T∞ =
276K. For a Newtonian fluid such as air the elements of the shear stress are
given by

σxx =
µ

Re

(
4
3
ux −

2
3
vy

)

σyy =
µ

Re

(
4
3
vy −

2
3
ux

)

σxy = σyx =
µ

Re
(uy + vx)

(6-6)
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Figure 6-1: Computational domain

Here Re = (ρ∞u∞δ∗
i )/µ∞ is the reference Reynolds number. The above vari-

ables and equations have been made dimensionless using reference scales, i.e. a
reference length δ∗

i which is taken as the displacement thickness at the inflow,
density ρ∞, velocity u∞, temperature T∞ and viscosity µ∞. The pressure and
energy density are in units ρ∞u2

∞ and time is scaled by δ∗
i /u∞. The subscript

∞ refers to the free stream values.

6.2.2 Spatial discretisation

To solve (6-1) we use a finite volume method on a structured grid that com-
putes the flux over the control volume edges as described in section 4.2.2. The
corresponding numerical flux h in (4-4) now consists of a inviscid and viscous
flux which are approximated in different ways. For the inviscid terms we use
the higher order TVD scheme described in section 4.2.2. The MUSCL tech-
nique with this specific limiter has already been successfully used in [94] for
an unsteady 3D flow. The viscous flux is approximated with a second order
accurate conservative scheme as defined in [93]. Since the viscous flux contains
second order spatial derivatives the standard approach is to find an appropri-
ate approximation of the first order derivatives on the control volume edges
which has been discussed in more detail in section 2.3.2.

6.2.3 Boundary conditions

In figure 6-1 the computational domain is sketched. The solid wall is repre-
sented by an adiabatic no slip boundary. At the inflow boundary we impose the
Blasius solution to the compressible boundary layer equations as described in
[96]. For the supersonic flow problem studied in this chapter the inflow bound-
ary can be split into two parts. The first part is the region near the solid wall
where the flow is subsonic due to the no-slip boundary condition. Based on the
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characteristics for inviscid flow (see [95]) one numerical boundary condition is
necessary. In total we extrapolate the density from the interior and impose
the pressure and the streamwise and normal velocity components. The flow in
the second part of the inflow boundary, away from the solid wall, is supersonic
and convection dominated. Here all characteristics enter the computational
domain and all flow quantities can be imposed. For the outflow boundary we
use a special buffer technique as developed in [96]. With this approach the dis-
turbances in all the solution components are gradually reduced to zero within
the buffer domain. The buffer acts on all components of the state vector and
can be described by the following formula

q = qref + ζ̃(x)(q̃ − qref ) (6-7)

where ζ̃ is the effective buffer function that contains a specific buffer function
ζ which will be outlined below, q̃ is the solution after the flux update and
before applying the buffer technique and qref is the reference solution with
respect to which the fluctuations in the solution are defined and damped in
the buffer. In this chapter we use the similarity Blasius solution at the outflow
position as the reference solution. The buffer function, ζ, is specified by

ζ = (1− C1x
2
b)

(
1− 1− eC2x2

b

1− eC2

)
(6-8)

where C1 and C2 are tuning parameters. The buffer coordinate xb is defined
by

xb =
x− xs

xe − xs
(6-9)

where xs and xe are the x-coordinates at the start and end of the buffer domain
respectively. The effect of the buffer region for a certain flow configuration
depends on the number of times that the buffer function is applied. Hence, if
the grid would be refined the buffer function would be applied more frequently
if one uses an explicit time integration scheme. In order to make the buffer
procedure independent of the number of time steps we take the effective buffer
value ζ̃ as

ζ̃ = ζC3∆t (6-10)

where the constant C3 is added as a tuning parameter. In ref. [96] an extensive
investigation has been performed fixing suitable values of the constants in (6-8)
and (6-10) which leads to C1 = 0.005, C2 = 20 and C3 = 26.4 for the present
flow.
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Figure 6-2: Blowing and suction profile of the normal velocity, v at the
free stream boundary.

The upper boundary acts as a free stream boundary where a time indepen-
dent blowing and suction profile is prescribed by imposing the normal velocity,
see figure 6-2. Along this artificial boundary not all dependent variables are
specified by physical boundary conditions and hence a numerical boundary
condition is added. In the region where suction is applied three characteris-
tics leave the computational domain and one characteristic enters the domain.
Therefore three variables are determined by extrapolation from the interior
domain and the fourth variable is determined by the prescribed normal ve-
locity. In the region where blowing is applied three characteristics enter the
computational domain and one characteristic leaves the domain. Again, the
normal velocity is prescribed and the remaining variables are determined by
coupling the incoming and outgoing characteristics with a locally one dimen-
sional non-reflecting boundary condition as defined in [70, 96].

6.2.4 Explicit time integration

For the explicit time integration we use the second order accurate explicit
four stage compact storage Runge-Kutta scheme defined in section 2.4.1. In
section 4.2.3 the stability time step for the inviscid flow was derived. Here we
include the contribution of the viscous flux into the stability time step. The
time step of the explicit scheme is bounded for stability reasons and for the
control volume Ωi,j the local stability time step equals

∆ti,j =
1

1
∆tci,j

+
1

∆tvi,j

(6-11)
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where ∆tci,j is the local time step limitation related to the inviscid flux and
analogously ∆tvi,j is related to the viscous flux. The inviscid time step lim-
itation is given by (4-7) and the local viscous time step limitation is given
by

∆tvi,j =
σΩ2

i,j

α
(
| li+ 1

2 ,j |2 + | li,j+ 1
2

|2
) (6-12)

where α = 4
3µ. In this chapter we will consider a time dependent flow and the

time step, ∆t, is taken equal to the minimum of all local stability time steps
∆ti,j.

6.3 Explicit numerical reference results

In this section we present some simulation results for the reference test case
described in [96] using the Runge-Kutta scheme as specified above. As an
initial condition we use the compressible Blasius boundary layer similarity so-
lution. For the present test case we take the Mach number equal to M∞ = 1.3
and the Reynolds number equal to Re = 500 based on the inflow displace-
ment thickness. The length and height of the computational domain and the
length of the buffer domain are respectively Lx = 500, Ly = 30 and Lb = 50.
We use an orthogonal grid with 193 × 65 points in the streamwise and nor-
mal direction respectively. The grid is uniform in the x direction while it is
stretched in the y direction using a rational stretching function with a maxi-
mal stretching ratio of ∆ymax/∆ymin = 8.6. The blowing and suction profile
described in the previous section is displayed in figure 6-2. The blowing and
suction profile starts at a distance of 49.6591 from the inflow boundary. The
specific choice of the parameters a, d,w and φ influences the shock strength
and position as well as the temporal behavior of the flow (for more details see
[96]). To obtain an unsteady flow with sufficiently strong shocks suitable for
the present study we take a = 0.12, d = 36, w = 300 and tan(Φ) = 0.0033.
With these settings the flow shows a strong interaction between the boundary
layer and the shocks which occur in the flow [96]. Data sampling starts after
the flow becomes statistically stationary. The transient process which leads to
this state is illustrated in figure 6-3 where we plot the shock sensor defined by

S(t) = max
∣∣∣∣
∂p

∂x
(t)

∣∣∣∣
∆x

p∞
. (6-13)

This is a measure for the maximum shock strength in the flow on a given grid.
The temporal behavior of the shock sensor indicates that after a certain

period the flow becomes statistically stationary. As an initial condition for
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Figure 6-3: Shock sensor as a function of time. The vertical line repre-
sents the beginning of the data sampling interval which lies well within
the statistically stationary region.

the sampling period throughout this chapter we take the solution obtained at
t = 10, 000. The sampling is performed in the interval T from t = 10, 000 to
t = 11, 000 in which period we determine time averaged and r.m.s. (root mean
square) values of fluctuating flow quantities. We used several CFL numbers,
varying from σ = 0.375 to σ = 2.0. For the latter the flow becomes unstable in
accordance with the stability limit of the Runge-Kutta scheme. We observed
that the L2-norm of the difference in the solution at t = 11, 000 obtained
with values of σ = 1.5 and smaller is of the order 10−4 and therefore we
may safely take σ = 1.5 for the explicit reference simulation. In figure 6-4
the time averaged Mach field is plotted with increment ∆M = max(M)/20
with max(M) = 1.6255. The presence of two shocks and a separation bubble
can clearly be observed. The solid line in figure 6-5 represents the mean skin
friction which displays the existence of a region of separated flow. Additionally,
the instantaneous streamwise velocity components at two locations in the flow
are plotted in figures 6-6 and 6-7 (solid lines). The significance of the dashed
lines is outlined in section 6.5.1. The first location (U1) is in the boundary
layer just in front of the separation bubble. The second location (U2) is
within the separation bubble itself. We observe that the temporal behavior at
the second location is more complex than at the first location and it may be
expected that the sensitivity of the solution at the two locations to changes in
e.g. the time step will be quite different as well. Therefore, we will use both
locations to study the effect of large time steps in the next sections.
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Figure 6-4: Time averaged Mach field over the sampling period T with
M < 1 (solid) and M ≥ 1 (dashed).

6.4 Implicit time integration method

In the previous section a second order accurate explicit Runge-Kutta method
was used for the time integration. The disadvantage of explicit methods is
the unavoidable restriction of the time step due to numerical stability require-
ments. The time step needed for a time accurate simulation may be signifi-
cantly larger than the stability time step for explicit methods given by (6-11).
For obvious reasons one would like to simulate with this accuracy time step.
In order to circumvent the stability requirements on the time step we adopt an
implicit time integration method. In this section we define the implicit time
integration method. The resulting nonlinear system of equations will be solved
using a pseudo time step method which was successfully applied in transonic
flow computations in [20]. Although there exist numerous other methods that
would be suitable to solve the resulting set of equations such as methods based
on local linearisation or ADI type schemes we use the pseudo time stepping
approach since our main focus is on the determination of the accuracy time
step for different types of flow quantities. In the latter context the solution
method determines only the computational effort and not the accuracy time
step and hence the distinction is not relevant here.

The main focus will be on the relation between the global accuracy of the
solution obtained with this implicit method and the choice of the time step and
other numerical parameters which will be defined in detail below. In order to
determine the accuracy of the solution we compare the implicit solution with
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Figure 6-5: Mean skin friction for the explicit method. The solid line
represents the skin friction on the original grid (193 × 65), the dashed
line on the fine grid (385× 129).
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Figure 6-6: Instantaneous solution U1 obtained with the explicit time
integration for the original grid (solid line) and the fine grid (dashed line).

the explicit reference solution for various different types of flow quantities, i.e.
mean, r.m.s. and instantaneous. Also, we investigate and formulate a proper
stopping criterion for the iteration process used to determine the steady state
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Figure 6-7: Instantaneous solution U2 obtained with the explicit time
integration for the original grid (solid line), and the fine grid (dashed
line).

solution in pseudo time. Moreover, we define a set of criteria which we require
to be satisfied by the global error caused by the time integration and which
relate the time step, the local accuracy and the relaxation method. In practice
one would also be interested in the computational effort of the implicit method
compared to the explicit method. It turns out that the basic implementation
of our implicit method is quite competitive with the explicit code with respect
to the required CPU time for relevant choices of the numerical parameters.

6.4.1 Time integration and implicit approximation of the flux

In chapter 4 the goal was to determine a steady state solution and it sufficed to
use the first order Euler backward scheme. Here we simulate an unsteady flow
and we want to determine the largest possible time step such that the solution
is resolved with acceptable accuracy. Of course, it is possible to use a first
order scheme for an unsteady simulation as well but it is our experience that
in that case the time step has to be chosen much smaller than the allowed
accuracy time step associated with a higher order time integration scheme.
Therefore we use the second order Crank-Nicolson scheme (2-40) in the rest of
this chapter. Each time step a nonlinear set of equations has to be solved as a
result of the spatial discretisation and temporal integration given by (2-42). As
mentioned already in section 2.4.2 it may be necessary to introduce a pseudo
time derivative in order to facilitate or enable the convergence towards the
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solution of the nonlinear system (2-42) in every time step. The resulting set
of algebraic equations for every pseudo time step is given in (2-44) and a more
detailed description of the iteration process can be found in section 2.4.2.

Similar to the flux, we distinguish the inviscid from the viscous part of the
flux Jacobi matrix. The inviscid part of the flux Jacobi matrix is approximated
using a first order upwind approach as described in section 4.4 which results
in a sparse matrix with 5 bands of 4× 4-matrices. The viscous flux defined in
section 6.2.2 uses a nine point stencil. In order to stay within the five point
stencil used for the inviscid part of the numerical flux Jacobi matrix we allow
another approach in which the cross derivatives are neglected. Consider a
transformation from physical to computational space

(x, y) −→ (ξ, η) (6-14)

Applying this transformation to e.g. the stress term σxx in (6-6) gives

σxx =
4
3

µ

Re
(ξxuξ + ηxuη)−

2
3

µ

Re
(ξyvξ + ηyvη) (6-15)

where ξx etc. are geometric terms arising from the transformation of the
derivatives. Switching to conservative variables and neglecting the terms that
would create cross-derivatives of ξ and η after additional differentiation with
respect to x in (6-1) yields

σxx ≈
4
3

µ

Re
ξx

(
ρu

ρ

)

ξ

− 2
3

µ

Re
ξy

(
ρv

ρ

)

ξ

(6-16)

Linearisation around the conservative variables and old time level and sum-
ming the results over all four edges of the control volume gives the correspond-
ing viscous contribution to the 4 × 4 flux Jacobi matrices. The total Jacobi
matrix can be obtained by the summation of the inviscid and viscous blocks
multiplied by a factor 1

2∆t arising from the time integration and the addition
of the diagonal blocks I

∆τ due to the pseudo time iteration.
The numerical system that has to be solved each time step is defined

in (2-44). A computationally more efficient method is possible if the left-
handside of (2-44) is evaluated only once in pseudo-time. It appears that, for
the present test case, the number of pseudo iterations necessary to obtain a
desired accuracy is unchanged in that case [41]. This indicates that either
the solution does not vary much during the pseudo iterations or that the
extra error introduced by the approximation of the flux Jacobi matrix has no
appreciable influence. Applying this approximation to the numerical system
in (2-44) we get

A∆vi,j = gi,j −Hi,j(vk) (6-17)
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where the matrix A is fixed during one time step and H corresponds to the left-
handside in (2-42). It is clear that the solution of (2-42) is obtained when (6-17)
converges. The speedup factor obtained with this approximation compared to
the case where the flux Jacobi matrix is updated every pseudo time step is
about 2.3.

6.4.2 Implicit treatment of boundary conditions

All boundaries of the computational domain are treated implicitly. For the
solid wall and the inflow boundary the implicit approach is straightforward. At
the free-stream boundary the implicit treatment of the conservative quantities
ρ, ρu and E is also straightforward. However, the implicit treatment of the
buffer domain and the blowing and suction is less trivial and will be outlined
next.

Buffer domain

The buffer technique described in section 6.2.3 was developed originally in
conjunction with the explicit time integration scheme described in section
2.4.1. For this explicit scheme the buffer is applied after every stage in the
Runge-Kutta scheme. As mentioned before, the solution in the buffer depends
on the number of times that the buffer is applied. If we would apply the buffer
explicitly in the implicit scheme it is not clear whether this should be done
after every time step, after every pseudo time step or even within the solution
process of the linear system. To circumvent the difficulties and arbitrariness
arising from an explicit application of the buffer function in the implicit scheme
we base the implicit treatment of the buffer on a generalization and redefinition
of the total flux in the buffer domain. Applying the Euler forward scheme
to (2-35) followed by the application of the buffer, results in a discretized
equation. Taking the limit of ∆t to zero of this set of algebraic equations
yields an equivalent differential equation in which an additional term is added
to the flux in (6-1) in the buffer domain. These steps are considered in more
detail next. Define the buffer by

ξ =
{

1 if x < xb

ζ̃(x) if x ≥ xb
(6-18)

where xb denotes the x-coordinate at the beginning of the buffer domain. If
we would use the Euler forward method we can write the solution on the next
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time step in two phases

vn+1 = qn
i,j −∆tfi,j(qn)

qn+1
i,j = q∗

i,j + ξ(vn+1 − q∗
i,j)

= qn
i,j −∆t

{
1

∆t(ξ − 1)(q∗
i,j − qn

i,j) + ξfi,j(qn)
}

= qn
i,j −∆tf̃i,j(qn)

(6-19)

where q∗
i,j is the reference solution and f̃i,j(q) is defined by

f̃i,j(q) =
{

1
∆t

(ξ − 1)(q∗
i,j − qi,j) + ξfi,j(q)

}
(6-20)

Taking the limit ∆t to zero in (6-19) shows that there exists a consistent
differential equation for every region of the computational domain






dq

dt
+ f(q) = 0, x < xb

dq

dt
+ α(q∗ − q) + f(q) = 0, xb ≤ x < xe

q = q∗ x = xe

(6-21)

where xe stands for the x-coordinate at the end of the computational domain
and α = C3 log(ζ) with ζ defined in section 6.2.3. Due to the construction of ζ
the value of α goes to infinity near the outflow boundary. Therefore we do not
treat (6-21) directly but use the formulation of the new flux in (6-20) instead.
This constitutes no limitation on the overall accuracy since the buffer domain is
only used to damp the reflections near the outflow boundary. The construction
of the corresponding new Jacobian matrix is straightforward since the blocks
in (4-13) corresponding to the buffer domain only have to be multiplied with
ξ and a new diagonal contribution has to be added according to the new flux
definition in (6-20).

Blowing and suction

Implicit treatment of the blowing and suction boundary is done in a way similar
to the treatment of the buffer domain. The blowing and suction specifies the
vertical velocity. Applying the Euler forward method for ρv gives

(ρv)n+1
i,j∗ = viρ

n+1
i,j∗ = (ρv)ni,j∗ −∆tvif

(ρ)
i,j∗(qn) (6-22)

where vi is the imposed velocity which is independent of time, j∗ is the j-index
at the upper boundary and the superscript ρ denotes the flux vector of the
mass equation in (6-1).
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6.4.3 Linear solver

At each pseudo time level a linear system has to be solved or approximately
solved as a result of the discretisation in (2-44). To this purpose we use a
symmetric Gauss-Seidel method which was described in more detail in section
4.4. Although the number of required iterations of the nonlinear system is
influenced by the accuracy of the solution to the linear system to a certain
degree, the required total CPU time for one time step is lowest at very few
linear iterations. In this chapter we use only one iteration of the symmetric
Gauss-Seidel solver. Since only very few iterations are necessary to obtain
an optimal efficiency, more advanced numerical methods such as e.g. Krylov
methods are not required.

6.5 Implicit time integration results

In this section we will present the numerical results obtained with the implicit
time integration method defined in the previous section. The main focus will
be on the relation between the global accuracy of the solution obtained with
the implicit method and the magnitude of the time step. In case of flow around
a pitching airfoil the investigation on the accuracy time step can be related to
an external time scale e.g. the pitching frequency. Although we do not apply
an external unsteady flow condition the flow becomes unsteady and another
measure for the time accuracy is desirable. Therefore we relate the global
error induced by the temporal integration to the spatial discretisation error.
In the numerical time integration scheme defined previously three parameters
remain that influence this global error: the time step ∆t , the local accuracy
with which the nonlinear system (2-42) is solved each time step, ε and the
relaxation parameter∆τ . Obviously one would like the global error to decrease
if the solution is determined more accurately at each time step. In order to
satisfy this quite general requirement it appears that the specific definition of
the measure for the local accuracy and the associated stopping criterion play
an important role. These elements will be discussed in more detail later on.

6.5.1 Error bounds

In order to determine whether a certain time step is acceptable or not we need
a measure for the accuracy of a certain flow quantity. To this purpose we
introduce E which represents a measure for the global error over the sampling
period T as described in section 6.3. In a moment we will define norms to
specify E in more detail for different types of quantities. It appears quite
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natural to require that over the total sampling period

E(t) < βE(∆x), 0 ≤ β < 1, (6-23)

which states that the global error due to the time integration should be smaller
than the global error due to the spatial discretisation. In this way the total
error remains of the same order as the inherent spatial discretisation error.
The value of E(∆x) depends on the flow quantity. If the error E(∆x) is large
for a certain flow quantity compared to errors in other quantities this quantity
is not well resolved on the reference grid. A smaller value of β leads to a more
conservative upper bound for the temporal error. However, no general value
for β can be given. The only practical requirement is that it should be small
enough to ensure that the time integration error remains small compared to
the spatial discretisation error for various quantities. In this chapter we take
β = 0.1. In the following, we first focus on the global error due to the time
integration after which we discuss the determination of the global error due
to the spatial discretisation.

A measure for the spatial discretisation error

The next step is to determine appropriate norms for the errors defined in
(6-23). Depending on the flow quantities that one considers more or less strict
limits on ∆tacc may have to be set. Therefore, we look at mean, r.m.s. and
instantaneous flow quantities. The numerical results for the explicit run on
the original grid are defined as the reference solutions. We define the following
general formula for the norm of the error of the averaged and r.m.s. quantities

E(ψ) =
1

ψnorm

{
1

LxLy

∫ Lx

0

∫ Ly

0
(ψ − ψref )2 dxdy

} 1
2

(6-24)

where Lx and Ly are the lengths of the computational domain, ψ is a general
notation for the quantity that one wants to observe, the subscript ref stands
for reference value obtained with the explicit solver and the subscript norm
stands for a normalization value. For the instantaneous quantities we define

E(ψ) =
1

ψnorm

{
1
T

∫ T

0
(ψ − ψref )2 dt

} 1
2

(6-25)

where T is the total sampling time. In this chapter we will use the skin
friction, the r.m.s. of U and the instantaneous velocity U measured at two
different locations in the computational domain to monitor the accuracy of
the simulation. Other quantities have been considered as well but do not lead
to different conclusions and will not be incorporated in this thesis.
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In order to determine the norms related to the global spatial discretisation
error we perform a simulation on a refined grid with the explicit method. We
use a fourth order interpolation method to obtain the fine grid with 385× 129
points from the reference grid with 193 × 65 points. The initial condition at
t = 10, 000 and the Blasius solution at the inflow and outflow boundary are
obtained with the same interpolation method. In figure 6-5 we have plotted
the mean skin friction coefficient corresponding to the sampling period T for
the explicit method on the original and the fine grid. The results are in good
agreement, which indicates that the mean quantities are sufficiently well re-
solved on the original grid. In figures 6-6 and 6-7 we have plotted the velocity
U at two different locations in the computational domain. In the smooth
region (U1) of the flow the results on the original and fine grid are in good
agreement, the main difference is in the amplitude, whereas the phase corre-
sponds well. For the velocity U2 only the large structures seem to agree. On
the fine grid additional higher frequencies in time are resolved. Considering
the results for U2, the reference grid appears too coarse to resolve all instanta-
neous quantities. However, calculations for large time steps with the implicit
method on the reference grid in the next section show very good agreement
with the reference solution for U2.

Requirements on global error

Here we study the effect of the magnitude of the time step on the global
norms E introduced in the previous section. The global error due to the time
stepping method does not only depend on the magnitude of the time step but
also on the local tolerance level ε which is a measure of the local accuracy
of the solution to the nonlinear system in (2-44) for each time step. Also
the relaxation parameter ∆τ may have a considerable effect, although it only
represents a way to obtain or accelerate convergence of the iterative process
in (2-44). Therefore the global error E on a given grid now depends on three
parameters: the time step ∆t, the local tolerance level ε and the relaxation
parameter ∆τ . The obvious requirement that the global error should decrease
if the solution is determined more accurately at each time step, which can be
achieved e.g. by decreasing the time step or using a higher local accuracy at
each time step, is more precisely formulated as:

1) E(∆t1, ε,∆τ) <∼ E(∆t2, ε,∆τ), ∆t1 ≤ ∆t2, ∀∆τ

2) E(∆t, ε1,∆τ) <∼ E(∆t, ε2,∆τ), ε1 ≤ ε2, ∀∆τ
3) E(∆t, ε,∆τ1) ≈ E(∆t, ε,∆τ2), ∆τ1 (= ∆τ2,

(6-26)

Requirement one states that the global error E should decrease if the time
step decreases. Secondly, the global error should not increase if one puts
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more effort into solving the nonlinear system each time step. This is stated in
requirement two. Requirement three is somewhat less transparent. Since we
do not solve system (2-44) to machine accuracy the solution may still depend
on the relaxation method. For our specific method the relaxation parameter
is ∆τ , but one can also think of other relaxation methods like e.g. multigrid.
Sensitivity on the relaxation method should be small. The requirements on
the global error E in (6-26) need the specification of a measure for the local
accuracy. However, the definition of the measure for the local accuracy, which
we denote by φ(v), is not unique. The specific definition of φ(v), which yields
the stopping criterion φ(v) < ε, appears to be a key factor in order to satisfy
the obvious requirement that the global error should decrease if the solution
is determined more accurately at each time step. Although the global error
demands in (6-26) seem very reasonable, it is not trivial to find a local measure
φ(v) such that all three requirements are satisfied. With

φ(vk) =
‖∆vk‖2
‖∆v1‖2

(6-27)

where the superscript k denotes for the pseudo time level, computations indi-
cate that requirements one and two of (6-26) are satisfied. Also, one can verify
that in the limit for ∆τ → 0 and ∆τ →∞ the third requirement is satisfied.

6.5.2 Comparison with explicit results

In this section we perform numerical simulations with the implicit scheme for
various time steps and local accuracies. First we illustrate the dependence of
the global temporal error on the time step and local accuracy after which we
elaborate on the optimal time step for mean and instantaneous flow quantities.

Global error versus time step and local accuracy

The time step for the explicit reference run is fixed at∆t = 0.2 which is slightly
lower than the stability time step defined in section 6.2.4. For the simulations
with the implicit time integration scheme we perform calculations for a range
of ∆t values. During simulation the time step is kept constant. In figure 6-8
the norms defined in (6-24) and (6-25) are plotted for various quantities and
different time steps as a function of the local accuracy ε = 10−k. The norms
are plotted for three types of quantities: mean, r.m.s. and instantaneous. At
fore hand one would expect that quantities which vary more rapidly are also
more sensitive to accumulated errors. This is illustrated by the results that the
mean skin friction has the lowest global error for every ∆t and ε considered,
whereas the instantaneous quantities U1 and U2 have the largest global errors.
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(a) Mean skin friction
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(b) R.m.s. U
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(c) Velocity U1
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(d) Velocity U2

Figure 6-8: Global error for different quantities as a function of the
local error ε = 10−k for various time steps.

Given the required accuracy stated in (6-23) i.e. E(∆x)/10 which is shown as a
solid horizontal line, the figures indicate that for almost all quantities and time
steps ε = 10−1 is too large. This is further illustrated in figure 6-9 where the
instantaneous solution U1 is plotted for ∆t = 2 and ε = 10−1. Although the
main trend in time is captured correctly, some additional incorrect frequencies
are introduced which clearly indicates that ε is too large. This correlates
well with the fact that for ε = 10−1 the global error norms do not satisfy
requirement one in (6-26). For the case ε = 10−2 almost excellent agreement
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Figure 6-9: Instantaneous solution U1 as a function of time for the
implicit scheme with ∆t = 2 and ε = 10−1 (dashed) and the explicit
reference solution (solid).

is obtained, which agrees with the significant drop in the norm shown in figure
6-8. For all smaller ε the three requirements in (6-26) are satisfied. The dashed
lines in figure 6-8 correspond to a solution which would be obtained as ε→ 0.
Although the local accuracy is decreased significantly, the global error reaches
an asymptotic value which indicates that the solutions converge quite rapidly
as a function of ε and only contain the effect of the truncation error of the time
integration. For larger ∆t it is not possible to obtain a converged solution for
arbitrary ε each time step. The threshold values of ε for ∆t = 4,∆t = 8 and
∆t = 16 are in the order of ε = 10−4, ε = 10−3 and ε = 10−2 respectively.
The convergence does not necessarily break down in the first time step for
each ∆t and ε pair but may occur somewhere within the sampling period.
This indicates that the convergence break-down depends not only on the time
step and stopping criterion but also on the initial condition and accumulated
effects. The convergence problem appears to be related to the pseudo time
stepping method which is discussed in more detail in section 6.6.

Optimal time step for mean quantities

Having categorized the global error as a function of ∆t and ε we now turn
to the optimal choice of ∆t. The horizontal lines in figure 6-8 represent the
error bounds defined in (6-23) with β = 0.1. For the skin friction figure 6-8
shows that for all time steps the choice ε = 10−2 results in an error smaller
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than 0.1%. We have also monitored other mean quantities like e.g. the mean
Mach field or the mean pressure on the solid wall. The global errors for these
quantities are even smaller than the global error for the skin friction, which
is a spatial derivative of a mean quantity. So, for mean quantities it seems
that the implicit time step can be chosen about eighty times larger than the
explicit stability time step for this specific problem.
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(a) U1 with ∆t = 4 and ε = 10−2

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
x 10

4

0.12

0.1

0.08

0.06

0.04

0.02

0

0.02

0.04

time

U
1

(b) U1 with ∆t = 8 and ε = 10−3
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(c) U1 with ∆t = 16 and ε = 10−2
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(d) U2 with ∆t = 16 and ε = 10−2

Figure 6-10: Instantaneous solution U1 and U2 as a function of time for
the implicit scheme for various time steps and local accuracies (dashed)
and the explicit reference solution (solid).
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Optimal time step for instantaneous quantities

It was remarked before that no general value for β can be given at fore hand.
We proposed a value of β that yields a conservative estimate for the allowable
global error in time. However, for some quantities the choice β = 0.1 may be
too restrictive. Consider for instance the quantity U1 at time step ∆t = 4
and ε = 10−2. In figure 6-8 the error lies slightly above the error threshold.
However, in figure 6-10 the solutions almost coincide which indicates that this
value of β is too small for this specific quantity. Additionally, in figure 6-10
we show the quantities U1 and U2 for the time steps ∆t = 8 and ∆t = 16 for
the highest attainable accuracy in these cases. For smaller ∆t all quantities
are resolved very well which can be concluded from the values of the norms in
figure 6-8. The figures show that for ∆t = 8 the quantity U1 is resolved quite
well. For ∆t = 16 the solution starts to deviate more but is still quite similar
to the explicit solution. The difference between the explicit solution and the
implicit solutions is larger for the quantity U2. At∆t = 8 the solutions start to
deviate and even more for ∆t = 16 where the main trend is still captured but
the deviation from the reference solution has increased considerably. Hence
the global error criterion (6-23) at β = 0.1 represents a robust and conservative
approach even for instantaneous quantities. To be on the safe side, a choice of
β ≤ 0.1 for the quantities U1 and U2 is recommended which means that∆t = 8
and ∆t = 16 are too large and ∆t = 4 is close to ∆tacc for these quantities.
For the instantaneous quantities the accuracy time step is therefore a factor
4 smaller than for the mean quantities. However, compared to the stability
time step for the explicit method this is still about a factor 20 larger.

6.6 Dynamical behavior for large time steps

In the previous subsection it was noted that for large time steps it is not
possible to obtain a solution over the total sampling period for arbitrary small
ε, see figure 6-8. The convergence does not necessarily break-down in the first
time step but may occur somewhere within the sampling period.

To study the effect of the time step on the convergence behavior we perform
one time step for a range of ∆t values with the initial condition taken as the
solution obtained at t = 10, 000 and the CFLτ number for the pseudo time
step set to 1.0, which is slightly smaller than the CFL number used for the
explicit reference simulation. For time steps up to ∆t = 6 no convergence
problems are encountered and arbitrary accuracy can be obtained.

The convergence behavior of the numerical system (6-17) in pseudo time
can be visualized with phase portraits by plotting the values of two typical
quantities at every pseudo time level. The location of these quantities is
determined by the value of ∆v in (6-17) at a certain moment in pseudo time.
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Figure 6-11: Phase portrait of two typical values of ρ for various time
steps and pseudo time steps.

The value of ∆v should converge to zero and therefore two locations are taken
where the absolute value of ∆v is maximal. In figure 6-11 we have plotted
such phase portraits in pseudo time using two typical values of the density for
∆t = 6,∆t = 8 and ∆t = 16.5. In order to visualize the behavior, the density
is adjusted by subtracting its value at iteration level k = 1000 if necessary.
The dynamical structure for these three time steps is quite different. In case
∆t = 6 the dynamic convergence behavior resembles that of a converging
spiral associated with a stable steady solution of (2-43). Compared to the
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convergence behavior at smaller time steps, which are all straight lines, a
structural difference of the dynamics around the fixed point already occurs
even though the fixed point of (2-42) is still an attractor and the proper
solution is obtained. For ∆t = 8 the convergence of the pseudo time iterations
stalls and no fixed point solution is obtained but there appears to exist some
kind of limit cycle. To determine whether the limit cycle is an attractor we
take a new initial condition such that the values of the observed densities lie
near the center of the cycle. To obtain this initial condition we start with
the solution at t = 10, 000 and perform a number of pseudo iterations for
which we determine the average of all flow quantities. The value of φ in the
center is about two decades lower than its value on the limit cycle, indicating
the existence of a true root of (2-42). However, after restarting the pseudo
time iteration the solution returns to the limit cycle, which indicates that the
limit cycle is indeed an attractor. If we start with CFLτ = 1.0 and switch
to CFLτ = 10−1 after a certain number of pseudo iterations the solution
does converge to the required solution of (2-42). However, if we use this
small CFLτ number during the total pseudo time iteration the solution does
not converge which indicates that the convergence depends sensitively on the
initial condition in a rather complex way to which we return in a moment.

For ∆t = 16.5 an exact period four solution is obtained. There seems to
be a connection with classical chaos theory where e.g. a fixed point solution
may become unstable and bifurcate into a period two solution which again
may bifurcate into a period four solution etc, as a function of some bifurcation
parameter. In our case we first investigate whether ∆t is a proper bifurcation
parameter and more systematically study the various types of possible con-
vergence stall. To examine the long τ behavior we define the winding number
by

Γ =
1

2π(N + 1− k∗)

N∑

k=k∗

ψk (6-28)

where k∗(2 1) is an iteration level at which the solution, roughly speaking,
lies on the attractor, N (2 k∗) is a sufficiently large iteration level and ψk is
the angle between two consecutive points in the phase portrait with respect to
the center of the limit cycle. For a range of ∆t between ∆t = 6 and ∆t = 100,
we observe a complicated behavior and 0.21 ≤ Γ ≤ 0.3. For some ∆t we find
almost exactly Γ = 0.25 which corresponds to a period four solution as in the
case of ∆t = 16.5. However, no period two solution (Γ = 0.5) is found, which
indicates that no direct link to classical chaos theory is apparent or that ∆t
is not the proper bifurcation parameter.

In the work of Yee and Sweby [100, 101] a study is made of the asymptotic
behavior of time integration methods for steady state problems which shares
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a number of features with our results. It is shown that depending on the time
integration method spurious solutions may occur as a function of the time step.
A spurious solution is defined as a steady or periodic solution of the numerical
system but not of the underlying differential equation. Additionally, they
show that bifurcations can occur for both the real and spurious solutions and
complex basins of attraction exist as a function of the time step. Depending
on the initial solution and time step the iteration process may converge to a
spurious or real solution.

In the present context we solve equation (2-42) to obtain the solution at
the next time step. By adding a pseudo time derivative to this set of nonlinear
equations, the required solution is the steady state solution of (2-43). So, we
use a time integration scheme to obtain a steady state which connects the
present work to the work of Yee and Sweby if we consider the pseudo time
step as the bifurcation parameter as described in [100, 101]. To confirm this we
repeat the simulation for ∆t = 16.5 (period four solution) with CFLτ = 1.2.
In figure 6-11 it is shown that for CFLτ = 1.2 the iteration process does
not converge to the period four solution but to a higher periodic orbit which
resembles the bifurcation path to chaos as in Yee and Sweby. The sensitivity
on the CFLτ number observed for the case of ∆t = 8 may now be explained
by the presence of the basins of attraction for the spurious and real solutions.
Yee and Sweby observe that for certain time discretisations and fixed point
solutions of a differential equation fragmented basins of attraction exist. This
agrees with the results for the simulations at ∆t = 8. If we start with the same
initial condition, the iteration process does not converge to the fixed point
solution for both CFLτ = 1.0 and CFLτ = 10−1. However, when switching
to CFLτ = 10−1 after a certain number of iterations at CFLτ = 1.0 we do find
the fixed point solution. This shows that the basin of attraction for the true
fixed point solution has a complex structure. Finally, we note that for ∆t = 1
and ∆t = 2 we used CFLτ = 1.0 for ε ≤ 10−3 which agrees with a remark
of Yee and Sweby in [100] where they state that for practical computations
the scheme has a higher chance of obtaining the correct physical solution if
one uses a ∆τ restriction of the same order as the stability limit of an explicit
method.

Additionally we examined the influence of the temporal integration of
(2-35) on the convergence problems described above and adopted the Eu-
ler backward scheme which is dissipative in contrast to the Crank-Nicolson
scheme. For large time steps the same convergence problems occurred which
indicates that this phenomenon is not caused by the specific properties of the
Crank-Nicolson scheme but is quite likely to be more general.
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6.7 Conclusions

In this chapter we have performed a DNS of a complex two dimensional un-
steady flow over a flat plate with an explicit and an implicit time integration
scheme. An explicit four stage compact storage Runge-Kutta method was
used as a reference method. For the implicit time integration scheme we used
the second order Crank-Nicolson scheme which results in a large set of coupled
nonlinear algebraic equations that have to be solved each time step.

The main disadvantage of explicit schemes arises from the fact that the
time step is bounded due to numerical stability requirements. A-stable im-
plicit schemes such as Crank-Nicolson, do not exhibit this problem. Conse-
quently, the time step is now bounded for accuracy reasons alone. As an
upper bound for the global error over the sampling period due to the time
integration scheme we used an estimate for the global spatial discretisation
error. The spatial discretisation error is determined through comparing sim-
ulations on the original grid and a refined grid. Given the upper bound of
the global error we formulated requirements for the global time integration
error which involve the time step, local accuracy of each time step and the
relaxation method such that the global error decreases if the local solution
is determined more accurately each time step. It turned out that the choice
of a proper function to measure the local accuracy plays a significant role in
order to fulfill these requirements. Computations showed that with suitable
numerical parameters the requirements are obeyed and proper solutions of the
flow problem are obtained. The corresponding accuracy time step depends on
the flow quantity that one wishes to resolve. Therefore we find that the global
spatial discretisation error seems to be a good measure of reference for the
allowed temporal error.

For instantaneous quantities it is possible to choose a time step about
twenty times larger than the stability time step for the explicit scheme, while
for mean quantities even a factor of eighty is attainable. This shows that the
stability time step is too restrictive with respect to accuracy and a considerable
speedup is in principle possible using implicit methods. With respect to the
CPU time we observe that depending on the flow quantity we were able to
achieve a speedup factor of 9.2 and 3.7 for mean quantities and instantaneous
flow quantities respectively without any code optimization.

Convergence problems were encountered for large time steps. Yee and
Sweby [100, 101] have shown that the steady state solution can bifurcate into
chaos if a time integration scheme is used to obtain the steady state. In our
case this corresponds to the pseudo time integration that we used to solve the
nonlinear system of equations to obtain the solution at the next time step.
Numerical simulations confirm the sensitive dependence on the pseudo time
step.
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Chapter 7

Analysis of multigrid
performance for unsteady flow

7.1 Introduction

The discussion on the magnitude of the time step in chapter 6 constitutes
a first step in achieving a criterion to dynamically determine the accuracy
time step during a simulation. It appeared that for a relevant choice of the
time step the implicit method could not outperform the explicit method with
respect to CPU time because a lot of pseudo time steps were required to
achieve a sufficient convergence level. Therefore, in this chapter we analyze
the convergence acceleration properties of the multigrid method described in
section 2.6 applied to the unsteady shock boundary-layer interaction flow.

Originally, multigrid was developed in order to accelerate the convergence
of elliptic problems [13, 38]. Later, multigrid was also used to accelerate
the convergence towards the steady state of hyperbolic systems which are
typically present in aerodynamic applications. Although multigrid has been
quite successful in these areas the “text-book” [14] acceleration of multigrid
as when applied to elliptic problems is not found. A typical example can be
found in Ref. [52] where a speedup factor of about ten was found. In chapter
5, however, only a modest acceleration was obtained which appeared to be
related to the specific choice of the spatial discretisation.

Gradually multigrid has also found its way in unsteady flow applications, as
introduced by Jameson in [48] by means of a pseudo time stepping approach as
described in section 2.4.2. Often a time stepping scheme is used as a smoother
([97]) in the multigrid process. This would limit its application to compressible
flows because for incompressible flows the continuity equation does not contain
a time derivative. A solution to this problem is the introduction of artificial
compressibility methods as proposed by Chorin in Ref. [23] and later improved
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by Turkel in Ref. [87] in which a pseudo time derivative of the pressure is added
to the continuity equation. This approach has successfully been adopted in
e.g. [10, 58]. In both cases the second order BDF2 scheme was incorporated to
advance the solution in physical time whereas an explicit Runge-Kutta scheme
was used as a smoother in pseudo time. Depending on the flow application
typically 50-300 V-cycles per time step were necessary for a decrease of the
residual of about 3-4 decades. However, no details about the convergence
behavior (which may depend on the magnitude of the time step), optimal
number of grids etc. were presented.

For compressible flows quite some research has been performed on the use
of multigrid for unsteady flows (see e.g. Refs. [2, 3, 25, 59, 69, 75]). In Refs.
[2, 3] BDF2 is used for the temporal integration and a Runge-Kutta scheme
is applied as a smoother in pseudo time. In these references two important
elements arise. First the magnitude of the pseudo time step is not only limited
by stability requirements due to the explicit time marching in pseudo time but
also by the number of grids used in the multigrid process and the magnitude
of the physical time step. In this chapter we use the implicit Euler backward
scheme in pseudo time and thus no stability requirements have to be met.
However, the magnitude of the pseudo time step may influence the convergence
as was observed in chapter 6. Second, the simulations in Ref. [3] show that
no multigrid acceleration is obtained if the physical time step is too small.
In addition to this observation which relates to the total CPU time we show
in this chapter that for unsteady flow problems good smoothing properties
required for a multigrid acceleration can only be obtained if the pseudo time
step and the physical time step obey certain criteria.

Finally, we mention the results presented in Ref. [25] in which the con-
vergence properties of multigrid for an explicit Runge-Kutta scheme and the
implicit Euler backward scheme in combination with the LU-SGS method in
pseudo time are studied for various unsteady flow problems. It is found that
for all cases the implicit multigrid scheme outperforms the explicit multigrid
scheme. This is in agreement with our findings in chapter 5 where the acceler-
ated implicit method (LU-SGS) outperforms the accelerated explicit method
as well.

In this chapter we analyze the multigrid performance in relation to the nu-
merical method described in chapter 6 for a relevant choice of the numerical
parameters. By means of a Fourier analysis we study the damping character-
istics of our numerical scheme which reveals that high and low frequencies of
the error are damped equally. We argue that this is caused by the additional
terms in the Jacobi matrix related to the unsteadiness of the flow and thus
clarifies the failure of multigrid to accelerate the convergence here.

The contents of this chapter is as follows. In section 7.2, a test case is
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identified which is suitable for multigrid acceleration. This is followed by a
presentation of numerical results in section 7.3. It appears that the order of
magnitude of the time step and pseudo time step prohibits multigrid accelera-
tion which is substantiated by a model equation study in section 7.4. Finally,
the conclusions are summarized in section 7.5.

7.2 Identification of test case

The development of a dynamical time stepping method for unsteady flow sim-
ulations is a major motivation for much of the research in this work. This is,
however, only useful if a competitive implicit method for large time steps can
be found. In chapter 6 it appeared that for the test case considered ∆t = 4
is the maximum time step for the accurate prediction of instantaneous flow
quantities of the shock boundary-layer interaction flow.

In this section we discuss some convergence characteristics of the numerical
scheme. We take the solution at t = 10, 000 as an initial condition and perform
one step for various magnitudes of the time step and pseudo time step. The

ε = 10−2 ∆t = 1 ∆t = 2 ∆t = 4 ∆t = 8 ∆t = 16
∆τ = 1 35 35 35 36 39
∆τ = 10 7 7 8 10 14
∆τ = 100 4 5 6 8 14,*
∆τ = 1000 4 4 6 7 –

ε = 10−3

∆τ = 1 51 52 52 54 –
∆τ = 10 10 12,* 13,* 16,* –
∆τ = 100 9 11,* 12,* – –
∆τ = 1000 9 11,* 12,* – –

Table 7-1: The number of required pseudo time steps in order to obtain
a local accuracy of ε = 10−2 or ε = 10−3 as a function of the time step
and pseudo time step. The – indicates that no convergence was possible
for the first time step and * indicates that convergence was not possible
over the total sampling period T .

results are presented in table 7-1 for two relevant values of the local accuracy
ε (see section 6.5.1). It appears that the required number of pseudo time steps
is rather insensitive to changes in the time step but is influenced more by the
pseudo time step.

For ∆t = 1 and ∆t = 2 it is sufficient to simulate with a local accuracy of
ε = 10−2 in order to resolve all types of quantities with an acceptable accuracy
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Figure 7-1: Instantaneous solution U2 as a function of time obtained
with the implicit scheme for ε = 10−2 (dashed) and ε = 10−3 (dashed
dotted) for ∆t = 4 and the explicit reference solution (solid).

(see figure 6-8). It turns out that it is possible to simulate with infinitely large
pseudo time steps during the complete sampling period in these cases which
shows that no multigrid acceleration is needed since only 4 pseudo time steps
are required each time step. For large time step such as ∆t = 16 only mean
quantities are resolved. Empirically we found that it is possible to use a
pseudo time step of ∆τ = 10 during each time step and the speedup factor
compared to the explicit method is already considerable. In section 6.5.2 it
was shown that the optimal time step to resolve instantaneous flow quantities
corresponded to ∆t = 4. From figure 6-10 we see that for U1 a local accuracy
of ε = 10−2 suffices. However, for the more sensitive quantity U2 (chapter 6)
a local accuracy of 10−3 is necessary which is shown in figure 7-1. Simulations
reveal that it is necessary to use a pseudo time step of ∆τ = 1 in order to
obtain a converged solution during the total sampling period which means that
approximately 52 pseudo time steps are required each time step. Therefore,
the parameter setting ∆t = 4, ε = 10−3 constitutes a good test case where
multigrid acceleration is desired. We use this test case in the rest of this
chapter.
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7.3 Multigrid applied to unsteady flow

The use of multigrid was originally developed for elliptic problems and was
later applied to steady hyperbolic problems as mentioned before. For these
steady flow cases multigrid appeared to be very successful as well. The general
consensus in literature is that if no ”text book” acceleration is obtained there
is something wrong e.g. in the implementation or choice of the boundary
conditions, the intergrid operators or coarse grid operators [14]. Because an
unsteady flow problem can be reformulated into a steady flow problem for each
time step it is often assumed that multigrid will accelerate the convergence
in pseudo time as well. In this chapter, however, we illustrate by means of
a Fourier analysis that straightforward generalization of multigrid results for
steady flow to unsteady flows is not always possible. On the basis of an order
of magnitude analysis in section 7.3.1 we argue that no smoothing may be
expected which is further substantiated by a model equation study in section
7.4.

The test case is described in section 7.2. The simulations are performed on
the same grid as described in section 6.3. The multigrid process is described in
section 2.6 and we use the same intergrid operators and coarse grid operator
as defined in section 5.2. The next coarser grid is obtained by deleting every
other grid point in both x- and y-direction. In the present setting we can alter
the type of multigrid cycle, the number of grid levels, the magnitude of the
pseudo time step and the number of pre- and post-relaxations as well as the
number of coarse grid relaxations. A wide variety of settings of the multigrid
parameters has been explored. Summarizing the results we conclude that
within the current framework no multigrid acceleration could be obtained. In
many cases the CPU time even increased compared to a single grid simulation.

In order to understand the fact that no multigrid acceleration is obtained
we study the damping characteristics of the numerical scheme by means of
a Fourier analysis which is explained next. For convenience we repeat our
numerical system:

(
I

∆τ
+ I +

1
2
∆t

∂F

∂q

)
∆q = g − F (qk) (7-1)

where F represents the numerical flux and the superscript denotes the pseudo
time level. If q∞ corresponds to the solution to (7-1) the error, w, in the
solution at iteration level k can be defined as

wk = qk − q∞ (7-2)

For the present purpose it is not required to perform a complete Fourier de-
composition of this error in two spatial dimensions. It is sufficient to use cross
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sections that correspond to lines in the physical domain with constant x- or
y-coordinate. If we assume periodic boundary conditions the error in e.g. the
x-direction for constant y can be decomposed as

wk(x) =
j=N/2∑

j=−N/2

ck
j e

Iφj (7-3)

where ck
j denotes the j-th Fourier coefficient, φj = (πjx)/L and L represents

the streamwise length of the computational domain. The damping charac-
teristics of the numerical scheme in (7-1) can be studied by the amplification
factor of subsequent Fourier coefficients i.e.

|ck+p
j |
|ck

j |
(7-4)

where p ≥ 1. Good smoothing properties are obtained if high frequencies
(large j) are damped faster than low frequencies (small j). By plotting the
damping coefficient in (7-4) as a function of j a possible preference of the
numerical scheme for damping high frequencies can be visualized. If this does
not arise multigrid acceleration is not possible.

In the next section we illustrate that based on the damping properties
of the numerical scheme no multigrid acceleration may indeed be expected
for the current test case independent of the specific choice of the multigrid
parameters.

7.3.1 Damping characteristics flat plate

It is common experience that multigrid performs better if a certain amount
of numerical dissipation is added which can be achieved e.g. by using a more
dissipative spatial discretisation. In order to simplify the analysis, in the
following we use the first order Roe scheme for the spatial discretisation. If no
multigrid acceleration can be obtained with this scheme then certainly for the
MUSCL scheme no acceleration may be expected. Therefore we perform one
time step with the Roe scheme on the original grid with ∆t = 4 and ∆τ = 1.
For q∞ we take the solution which is obtained without multigrid with a local
accuracy of ε = 10−12. In this way the error, wk at pseudo time level k can
be determined with (7-2). In figure 7-2 the error wk(x) in the density at
the solid wall is plotted for three pseudo time levels. The errors are scaled
by their range such that they can be presented in the same figure. Clearly,
the initial error contains high as well as low frequencies. For good smoothing
properties the high frequencies should vanish at subsequent pseudo time levels.
However, as can be observed from figure 7-2 this is not the case and roughly a
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Figure 7-2: The scaled error wk(x) in the density at the solid wall for
k = 1(solid), k = 5 (dashed) and k = 10 (dashed dotted). The errors are
scaled by 0.01, 0.0081 and 0.0045 respectively.
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Figure 7-3: Damping coefficient c10/c1 for the error in the density at
the solid wall.
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uniform error reduction arises. Additionally, the damping coefficient c10
j /c1

j is
plotted in figure 7-3 which reveals that there is no damping preference for high
frequencies and therefore no multigrid acceleration can be expected. Similar
results are found for other cross sections parallel to the x-axis which indicates
that there is no smoothing in x-direction. The smoothing properties of our
numerical scheme in y-direction are studied next. In figure 7-4 the scaled error
wk(y) is plotted for two different cross sections parallel to the y-axis for x = 267
and x = 319.27. If the two errors at the different cross sections are compared

0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.80
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y

scaled error in density

Figure 7-4: The scaled error wk(y) in the density for two cross sections
parallel to the y-axis. The two solid lines represent the error at k = 1
the dashed line the error at k = 10 taken at the same cross section as
the right solid line.

it is clear that the error at x = 267.00 is smoother than the error at x = 319.27
and no high frequencies seem to be present. Therefore for this particular error
no further smoothing is necessary. However, for the error at x = 319.27 it
is clear that the error profile at k = 10 contains less high frequencies which
is also confirmed by a Fourier analysis. A smoothing analysis for other cross
sections parallel to the y-axis does not alter our conclusions.

Although there is considerable smoothing in y-direction, the lack of smooth-
ing in x-direction of our numerical scheme appears to be the bottleneck and
explains the bad multigrid performance observed earlier. The peaks in the
residual in x-direction are related to the shocks present in the flow. One
might argue that this is the reason that no smoothing is obtained. However,
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we observe that a Fourier-analysis of the error for the transonic inviscid flow in
chapter 4 reveals that high frequencies are damped more efficiently than low
frequencies which is in agreement with the fact that multigrid does accelerate
the convergence towards the steady state (see chapter 5).

The preference in smoothing direction may be explained by a simple order
of magnitude analysis. Consider the numerical scheme in (7-1). The flux
Jacobi matrix can be written as

∂F

∂q
=

∂Fx

∂q
+

∂Fy

∂q
(7-5)

where Fx and Fy represent the flux in x- and y-direction respectively. In
order to determine which term in 7-5 dominates the total flux Jacobi matrix
we need a proper norm. The dependence of the smoothing on the spatial
direction is related to the eigenvalues of the flux Jacobi matrix. Because
the matrices are large an eigenvalue analysis is costly. However, a rough
estimate is possible if we take into account that the building blocks of the
flux Jacobi matrix are determined by the local eigenvalues of the flux Jacobi
matrices of the Navier-Stokes equations as described in section 6.4. Because
the present test case is convection dominated we approximate the eigenvalues
by the maximum inviscid eigenvalues which in x- and y-direction are given
by (|u| + c)/∆x and (|v| + c)/∆y respectively. In figure 7-5 these eigenvalues
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Figure 7-5: Approximation of the inviscid eigenvalues for several cross
sections in x- and y-direction.

are plotted for several cross sections parallel to the x- and y-axis. From the
magnitude of the eigenvalues it follows that ∂Fy/∂q dominates the flux Jacobi
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matrix in (7-5), especially in the region near the solid wall, which follows from
the construction of the Jacobi matrix described in section 4.4. As observed
earlier a sufficient spatial coupling (related to the superior performance for
elliptic problems) must exist in order to obtain good smoothing properties.
This may explain the fact that a certain amount of smoothing is obtained in
y-direction whereas no smoothing at all is found in x-direction. However, next
to the flux Jacobi matrix two additional terms are present in the smoothing
operator (7-1) related to the implicit time integration in physical and pseudo
time. These terms dominate the left-hand side of (7-1) if the time step and
pseudo time step are relatively small. These results are in agreement with the
results presented in table 7-1 where the required number of iterations for fixed
CFL number in pseudo time was quite insensitive to changes in the magnitude
of the physical time step which indicates that the term I/∆τ dominates the
left-hand side of (7-1) especially for small ∆τ .

For large time steps and large pseudo time steps it is clear that the flux
Jacobi matrix dominates the matrix in the left-hand side in (7-1) and better
smoothing properties are expected. However, such simulations for this test
case are not possible because of convergence problems related to the dynam-
ical behavior as outlined in section 6.6 and because time-accuracy is desired.
Therefore, in section 7.4 we consider a model equation and determine crite-
ria for the magnitude of the time step and pseudo time step such that good
smoothing properties are expected.

7.3.2 Changing the smoother

The previous results showed that for the present numerical method no smooth-
ing is obtained. One may argue that we have used a bad smoother and multi-
grid acceleration can be obtained if more effort is put into finding a proper
numerical method. In this section we show that significant changes in the
numerical method do not change the smoothing properties which confirms our
estimates about the desirable order of magnitude of the matrices in (7-1).

First we change the approximation of the flux Jacobi matrix and use the
numerical Jacobi approximation as described in section 3.4.2. The simulation
described above is repeated and no significant changes are observed. Similar
to the previous case no smoothing is obtained.

Second we apply residual averaging to ∆q in (7-1). Residual averaging
is frequently used to increase the stability region of explicit time integration
schemes see e.g. Ref. [27]. In this way larger time steps can be taken which im-
proves the overall smoothing properties of the numerical scheme. The present
residual averaging operator is given by

(1− ξ∇i∆i)(1− ξ∇j∆j)∆q̃i,j = ∆qi,j (7-6)
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where ξ is a constant, (i, j) denotes the coordinates in the computational
domain and ∇ and ∆ represent a forward and backward differencing operator
respectively. The new solution in pseudo time is now updated by ∆q̃ instead
of by ∆q. We find that for ξ = 1

2 , the speedup factor on a single grid is about
a factor 2 which is in agreement with results presented in [27]. However,
the smoothing properties are not improved and no multigrid acceleration is
obtained.

The above results once more indicate that the terms in (7-1) related to the
time integration destroy the desired smoothing properties if ∆t and ∆τ are
too small. In the next section a stronger relation between the eigenvalues of
the flux Jacobi matrix, the time step and the pseudo time step will be derived
for a model equation in order to analyze multigrid performance.

7.4 Model equation

In section 7.3.1 we showed that no multigrid acceleration can be expected
for the present test case because low and high frequencies of the error in
the solution during the pseudo time iteration were equally damped. Here
we study the damping characteristics of our numerical scheme (see chapter
6) applied to the one-dimensional inviscid Burgers equation in (2-6). It is
well-known that proper multigrid performance is only obtained if there is a
strong coupling in space of the numerical operator which coincides with the
fact that the multigrid algorithm was originally developed for elliptic operators
[13, 38, 97]. The left-hand side of (7-1) is the smoothing operator where the
partial derivative ∂F/∂q represent the coupling in space since F corresponds
to the spatial flux. Also, one may argue that the terms in the smoothing
operator related to the temporal integrations are multiples of the identity
matrix which damps all Fourier-components equally. So, in order to obtain
a sufficient spatial coupling the terms on the left-hand side of (7-1) must at
least be of the same order and preferably ∂F/∂q should dominate. For explicit
methods the stability time step is related to the eigenvalues of the flux Jacobi
matrix (see e.g. section 4.2.3). Here we also relate the time steps in physical
and pseudo time to the derivative of the flux function in a similar way. We
will show that appropriate damping characteristics for multigrid acceleration
are obtained if the CFL-numbers corresponding to the physical and pseudo
time obey certain criteria.

Assume a uniform grid with grid spacing ∆x on the interval [0, 1] with
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N + 1 points (i = 0 . . . N), define the minimum and maximum eigenvalue by

q̂ = min
i

∣∣∣∣
∂F

∂q

∣∣∣∣ =
1
∆x

min
i

1
2
|qi + qi−1|

q̃ = max
i

∣∣∣∣
∂F

∂q

∣∣∣∣ =
1
∆x

max
i

1
2
|qi + qi−1|

(7-7)

and define the physical and pseudo time step as in (2-37) by

∆t =
σt∆x

maxi(qi)
≈ σt

q̃
and ∆τ =

στ∆x

maxi(qi)
≈ στ

q̃
(7-8)

where σt and στ are the CFL-numbers in physical and pseudo time respectively.
For the 1D Burgers equation the terms in the left-hand side of (7-1) are of the
same order if

1
2
∆t

∂F

∂q
>∼ 1 ⇒ σt

>∼ 2ξ

and
1
2
∆t

∂F

∂q
>∼ 1
∆τ

⇒ σtστ
>∼ 2ξq̃

(7-9)

with ξ = q̃/q̂. Note that due to the construction in (7-1) the pseudo time
step is dimensionless whereas στ has dimension one over time. In figure 7-

t

Figure 7-6: Area for which multigrid acceleration is expected

6 the inequalities in (7-9) are represented graphically and the shaded region
corresponds to the region where both inequalities are satisfied. Clearly, four
different cases can be distinguished: both inequalities are satisfied (shaded
region), none are satisfied and only one is satisfied.
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In order to study the damping characteristics corresponding to these four
cases we perform a numerical simulation of the 1D inviscid Burgers equation
with boundary conditions given by

q(x, 0) = 1 and q(0, t) = 1 +
1
2

sin(ωt) (7-10)

where ω represents the frequency of the disturbance at the inflow boundary
condition. For the spatial discretisation we take the first order Roe scheme
as in section 7.3. The solution after 1000 time steps, obtained with σt =
1.0, is determined. Then we perform one time step for four (σt,στ ) pairs
corresponding to the four regions described above. As a test case we take
ω = 1.0 and L = 10, where L denotes the length of the physical domain.
Computations are performed on a uniform grid with grid spacing ∆x = 1/100.
For this typical example ξ = 2.44.

The error in the solution during the pseudo time iteration is determined as
in section 7.3 and q∞ is determined with local accuracy ε = 10−12 as defined in
(6-27). In figure 7-7 the damping characteristics are presented for four pairs of
(σt,στ ). In figure (a) both requirements in (7-9) are satisfied, in (b) only the
second requirement is satisfied, in (c) none of the requirements are satisfied
and in (d) only the first requirement is satisfied. Because στ determines the
convergence rate, the damping characteristics are determined for an appropri-
ate choice of the pseudo time level in each case. Only (σt,στ ) = (10, 1000)
satisfies both requirements in (7-9). As can be observed from figure 7-7(a) the
higher frequency components of the error are damped more rapidly than the
lower frequencies, which indicates desired smoothing properties for multigrid
acceleration. Clearly, no smoothing is obtained for the choices of σt and στ in
figures 7-7(b) and 7-7(c). Although the damping characteristic in figure 7-7d
is not as good as in figure 7-7(a) (especially the bump between Fourier-index
100 and 200), one might argue that a little smoothing is obtained. However,
as observed earlier good smoothing is only obtained if a strong spatial cou-
pling exists in the numerical operator. For the present simulations the Jacobi
matrix is determined only once. The number of required outer iterations to
obtain the local accuracy 10−12 decreases significantly for (σt,στ ) = (10, 1000)
if the Jacobi matrix is updated every pseudo time step whereas for the other
three choices of σt and στ the number of required outer iterations remains
approximately the same. This further shows that the left-hand side of (7-1)
is dominated by the spatial terms for (σt,στ ) = (10, 1000) and no smooth-
ing may be expected for (σt,στ ) = (10, 1). Additionally we have performed
simulations for higher frequencies ω which confirmed the findings for ω = 1.

The above results indicate that the model presented in (7-9) predicts the
smoothing rate rather well. Smoothing is only obtained for the choice of
(σt,στ ) that lies in the shaded region in figure 7-6. Additionally, we observe
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(d) (σt,στ ) = (10, 1)

Figure 7-7: Damping characteristics for various combinations of σt and στ .

that the frequency ω does not influence the smoothing properties for the dif-
ferent choices of (σt,στ ). This agrees well with the fact that the present
approach relies on an estimation of the order of magnitude of the terms in
(7-1). However, we observe that no attention is paid to the accuracy of the
solution after one time step, only the smoothing properties of the numerical
scheme are studied. For high frequencies a small σt is necessary in order to
resolve the solution accurately in time. In this way the first inequality in (7-9)
is not satisfied and no smoothing may be expected.
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7.5 Conclusions

In this chapter an analysis of multigrid performance for unsteady flows was
given. As a test case the unsteady flow described in chapter 6 is used. It turns
out that independent of the multigrid settings such as pre and post relax-
ations, number of grid levels and type of cycles, no convergence acceleration is
obtained. Also changes in the smoothing operator led to the same conclusion.

A Fourier analysis of the error on cross sections of the computational do-
main indicates that there is a difference in smoothing properties in x- and
y-direction. In x-direction high and low frequencies in the error are damped
equally, thus no smoothing is obtained. However, reasonable smoothing in
y-direction is present. By means of a simple order of magnitude analysis we
argue that this preference is related to the magnitude of the eigenvalues of the
flux Jacobi matrix in both directions which is influenced greatly by the aspect
ratio of the grid.

Similarly, we argue that the terms related to the temporal integration
in both physical and pseudo time dominate the smoothing operator. Since
for good multigrid performance a sufficient spatial coupling in the smoothing
operator must be present, this explains the bad multigrid performance. These
observations are further substantiated by a model equation study. In this
study criteria on the CFL-numbers in physical and pseudo time are derived
such that the smoothing operator is dominated by the flux Jacobi matrix.
Numerical experiments show that proper smoothing properties for multigrid
application are obtained if these criteria are obeyed. However, in the boundary
layer application of chapter 6 these criteria do not comply with the demand
of sufficient small ∆t for time-accuracy.

Since the bottleneck for fast convergence is related to the behavior in x-
direction the question arises whether it is possible to decouple the temporal
treatment of the fluxes in the two spatial directions. Therefore, in the next
chapter a new family of second order time integration schemes will be dis-
cussed which treat the flux in x-direction explicitly and the flux in y-direction
implicitly.
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Chapter 8

Partially implicit time
integration schemes

8.1 Introduction

For flow problems where grids with high aspect ratios are required e.g due
to complex geometries or thin boundary layers the stability time step of an
explicit time integration scheme may be much smaller than the time step
which would be required for accuracy reasons. Also, different convergence
characteristics may be present in the corresponding coordinate directions as
was observed in the previous chapter. In this chapter we develop new schemes
which are especially adapted to such problems. In these schemes the flux in
one direction is treated explicitly, whereas the flux in the other direction is
taken in an implicit way. We call these schemes partially implicit. We consider
the supersonic flow over a flat plate, described in chapter 6, as the test case.
With respect to CPU time no spectacular gain is expected compared to the
required CPU time for an explicit scheme since the aspect ratio for this test
case is not very large. However, for the development of new schemes this
constitutes no problem and more deserving applications may be found such as
e.g. turbulent flows over a pitching wing modelled by the RaNS equations or
a turbulent 3D flow over a flat plate as in [71]. In order to substantiate the
applicability of the schemes for these cases we artificially increase the aspect
ratio of the standard grid for the current test case. In this way the stability
time step for an explicit scheme becomes more restrictive and the benefits of
a partially implicit scheme are obvious.

In the previous chapter it was illustrated that for a supersonic 2D flow over
a flat plate no multigrid acceleration could be obtained due to bad smoothing
properties in the streamwise direction of the flow. Because multigrid did not
accelerate the convergence the fully implicit method in chapter 7 could not
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compete with the explicit reference method with respect to CPU time for
a relevant choice of the numerical parameters. As the accuracy time step
corresponds approximately to the numerical stability time step in streamwise
direction in this test case, we suggest to distinguish between the flux in the
streamwise and normal direction and to treat the streamwise flux explicitly
and the normal flux implicitly in the time integration method. In this way
the stiffness problem due to the fine grid in normal direction near the solid
wall is removed. In Ref. [6] this idea has already been applied to an unsteady
shock-induced oscillatory flow over an airfoil modelled by the thin-layer Navier-
Stokes equations where the main motivation for this approach was related to
memory requirements for a fully implicit method. There the following time
integration scheme was suggested

(
I

∆t
+

∂Fy

∂q

)
(qn+1 − qn) = −Fx(qn)− Fy(qn) (8-1)

where Fx and Fy denote the numerical fluxes in x- and y-direction respectively
and ∂Fy/∂q symbolically represent the Jacobi matrix of the numerical flux Fy.
This scheme can be viewed as a mix of the linearized Euler backward scheme
and the Euler forward scheme applied to the fluxes Fy and Fx respectively. It
is only first order accurate in time as can be shown using a Taylor expansion.
Because (8-1) is a mixture of an explicit and an implicit scheme it cannot
be expected that the numerical method is stable for all time steps which was
confirmed by numerical experiments in [6]. It was observed that the time
step for the partially implicit scheme was bounded by stability rather than by
accuracy reasons but the time step that could be used was still about a factor
1000 larger than the time step for the strictly explicit scheme.

We found that for our test case a first order implicit time integration
scheme does not yield an accurate solution for ∆t = 4, which is the accuracy
time step found in chapter 6 for second order schemes. The amplitude of the
solution of the instantaneous quantities U1 and U2 was damped considerably
which may be related to the dissipative truncation error of the Euler Backward
scheme. In order to obtain an accurate solution the time step had to be
decreased, which leads to a considerable increase of CPU time. In particular
400 time steps per period of the dominant oscillation were required in [6]
for the fully implicit scheme to obtain an accurate solution. Therefore in this
chapter we develop partially implicit schemes of higher order in time. It will be
shown that a special combination of the second order Crank-Nicolson scheme
with a class of second order Runge-Kutta schemes results in a second order
consistent time integration scheme. Next to the consistency requirement of the
numerical scheme we also address other numerical aspects such as stability
and steady-state-consistency. It turns out that optimal stability properties
and steady-state-consistency cannot be combined. Numerical simulations are
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performed in order to establish the appropriate hierarchy of requirements on
the numerical method.

The contents of the chapter is as follows. In section 8.2 a class of sec-
ond order mixed schemes is derived. In section 8.3 a subclass of schemes is
presented which are steady-state-consistent. The numerical stability of the
mixed second order schemes is studied in section 8.4. In section 8.5 numerical
results are presented for some specific mixed schemes. Finally, in section 8.6
the conclusions are summarized.

8.2 Mixed multi-stage schemes

In this section we develop a class of second order partially implicit schemes
in time by combining the implicit Crank-Nicolson scheme with a class of ex-
plicit Runge-Kutta schemes. To this purpose consider the general differential
equation

dq

dt
+ h(q) =

dq

dt
+ f(q) + g(q) = 0 (8-2)

where h is a sufficiently smooth function of q and f and g are a general de-
composition of h. In the following we will treat the function f explicitly
and the function g implicitly. For incompressible flows which are convectively
dominated a commonly used splitting is to treat the nonlinear inviscid terms
explicitly whereas the linear viscous terms are treated implicitly, see e.g. [63].
To this purpose the Adams-Bashforth Crank-Nicolson scheme is often incor-
porated [68] which is given by

qn+1 − qn +
1
2
∆t(3f(qn)− f(qn−1)) +∆t

1
2
(g(qn+1) + g(qn)) = 0 (8-3)

It is known that in case the viscosity is small the scheme is unstable if the
strict Von Neumann criterion is required [68]. This instability is related to
the stability region of the explicit Adams-Bashforth scheme [4] which does not
contain a part of the imaginary axis. Also, the scheme requires three time levels
which may introduce parasites [4]. In this chapter we develop a class of single
step partially implicit schemes by combining the Crank-Nicolson scheme with
a certain class of Runge-Kutta schemes which in general have more desirable
stability properties than the Adams-Bashforth scheme.

8.2.1 Second order multi-stage schemes

In this section we give necessary conditions for second order accuracy of a
typical class of multi-stage schemes. To obtain second order accuracy we mix
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the Crank-Nicolson scheme with a class of p-stage Runge-Kutta schemes given
by






q(0) = qn

q(k) = q(0) − αk∆tf(q(k−1)), k = 1, . . . , p
qn+1 = q(p)

(8-4)

where αk is a real number and p ≥ 2. For p = 4 we obtain the explicit Runge-
Kutta scheme defined in section 2.4.1. Using a Taylor expansion it is not hard
to show that, in order to obtain a second order consistent explicit scheme of
the type defined above, the coefficients in the final two stages must satisfy
αp−1 = 1/2 and αp = 1. The choice of the coefficients, αk, for 0 < k < p− 1
and p > 2 does not affect the second order accuracy but may change the
stability region considerably. In fact the schemes in (8-4) are at best second
order accurate. To clarify this we first consider the three-stage scheme. For
second order accuracy the values of αp and αp−1 are fixed as mentioned above.
A Taylor expansion around qn yields for the local truncation error E(∆t) as
defined later on in (8-7)

E(∆t) =
([

1
2
α1 −

1
6

]
(fq)2f −

1
24

fqqf
2
)

(∆t)3 + O((∆t)4) (8-5)

where the subscript denotes the corresponding derivative and all functions are
evaluated in qn. Obviously, for general functions f it is not possible to obtain a
globally third order accurate scheme. For a general p-stage scheme, with p > 3,
the statement that the accuracy is at best of second order follows immediately
from the results for the three-stage scheme because in every additional stage a
factor ∆t arises and therefore the k-th stage contributes to the O((∆t)p−k+1)
term and higher order terms of the local truncation error.

The question arises whether it is possible to combine a second order explicit
scheme with a second order implicit scheme resulting in an overall second order
scheme in time. The requirement that the scheme should be a mixture of two
second order schemes is quite natural because the numerical scheme should
retain its second order accuracy in case one of the functions f or g vanishes.
Similar to the accuracy results of the explicit schemes a specific class of second
order accurate schemes is obtained if and only if the last two stages are fixed
as follows:






q(0) = qn

q(k) = q(0) − αk∆t f(q(k−1))− βk∆t g(q(k)), k = 1, . . . , p− 2
q(p−1) = q(0) − 1

2∆t f(q(p−2))− 1
2∆t g(q(p−1))

q(p) = q(0) −∆t f(q(p−1))− 1
2∆t g(q(p))− 1

2∆t g(q(0))
qn+1 = q(p)

(8-6)
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where αk and βk are real numbers and p ≥ 2. This class of schemes is a
combination of the Runge-Kutta schemes in (8-4) with the Crank-Nicolson
scheme. The stages corresponding to k < p− 1 do not affect the accuracy but
may affect the stability as will be shown in section 8.4.

The accuracy of these schemes can be derived by considering the two-stage
scheme (p = 2) first. The local truncation error E of (8-6) is defined as in Ref.
[4] by

E(∆t) = qn+1 − qn +∆t(f(q(1))− 1
2
g(q(2))− 1

2
g(q(0))) (8-7)

A Taylor expansion around qn yields E(∆t) = O((∆t)3) which shows that
the two-stage scheme in (8-6) is a locally third order consistent scheme and
therefore a globally second order consistent scheme is obtained [4]. In the
following discussions on the accuracy of the numerical schemes the order relates
to the global truncation error unless stated otherwise.

For the schemes in (8-6) the function g is treated implicitly everywhere
which implies that a nonlinear system has to be solved every stage. This is in
contrast with the fully implicit scheme where the nonlinear system has to be
solved only once. The second order consistency is not affected if the function
g is treated explicitly in the stages with k < p. However, for our present
flow application the function g corresponds to the flux in the normal direction
as was outlined in the introduction. The stability time step in the normal
direction was found to be too small compared to the accuracy time step due
to the fine grid near the solid wall. If the function g is treated explicitly in
the first stage, the first stage is fully explicit which results in a severe stability
restriction on the time step. For this reason we treat the function g implicitly
in all stages.

8.3 Steady-state-consistency

Next to the order of consistency the ability of a numerical scheme to yield a
steady state solution independent of the time step is required. For the well-
known second order scheme of MacCormack [60], Jameson showed in Ref. [47]
that the steady-state solution depends on the time step and for this reason
MacCormacks scheme was rejected in the selection of an explicit solver in
[104]. In the following the ability of a numerical scheme to yield a steady state
solution independent of the time step is denoted by steady-state-consistency.
First we show that the schemes in (8-6) are not steady-state-consistent in
general and subsequently a subclass of schemes is presented which are steady-
state-consistent.
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8.3.1 Model equation

In this section we show that the four stage scheme in (8-6) with β1 = 0 and
β2 = 0 is not steady-state-consistent. The choice for this scheme appears to be
sensible because of its computational efficiency (no implicit part in the first two
stages) and its stability properties (see section 8.4). However, the numerical
results presented in section 8.5.2 indicate that the steady-state-consistency is
an important requirement for the choice of a proper time integration scheme.
The steady-state-consistency of this scheme is studied for a model equation
next.

Consider the one-dimensional viscous Burgers equation given by

qt + (
1
2
q2)x = qxx (8-8)

In Ref. [11] a table of solutions to (8-8) is given and a specific time dependent
solution is given by

q(x, t) = − 2 sinhx

cosh x + e−t
(8-9)

Clearly, this solution evolves into the steady solution q(x) = −2 tanh x. The
error in the numerical solution after one time step can be written as

Ẽ(∆t) = q̃(x, t +∆t)− q(x, t +∆t) (8-10)

where Ẽ is the truncation error of the numerical scheme, q̃ corresponds to the
solution obtained with a numerical scheme and q denotes the exact solution
given by (8-9). In order for the numerical scheme to recognize a steady state
solution we demand that

lim
t→∞

Ẽ(∆t) = 0 (8-11)

independent of ∆t. For the Runge-Kutta schemes and the Crank-Nicolson
scheme the local truncation error can be written as

Ẽ(∆t) =
∞∑

k=3

γk(q)(∆t)k (8-12)

where the function γk(q) is a polynomial in terms of derivatives of the function
h in (8-2) with respect to q as can be derived from a Taylor expansion. In
case a stable steady state exists, which corresponds to h(q) = 0, the error E
vanishes due to the specific form of the truncation error. For the mixed four-
stage scheme the general structure in the truncation error is less transparent.
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However, it is possible to calculate the limit in (8-11) for the model equation
(8-8). After some elementary and tedious calculations it is found that

lim
t→∞

Ẽ(∆t) =
32

(
6 (cosh(x))2 − 6− (cosh(x))4

)
sinh(x)

3 (cosh(x))7
(∆t)3 + O((∆t)4)

(8-13)

which shows that the error does not vanish and thus the obtained steady state
solution depends on ∆t for this particular scheme.

8.3.2 Steady-state-consistent schemes

The model equation studied above for the four-stage scheme reveals that not
all schemes (8-6) are steady-state-consistent. However, we will show that there
exists a subclass of second order steady-state-consistent schemes. Consider the
two-stage scheme in (8-6) and assume that the differential equation (8-2) has
a steady state solution denoted by q∗. If we assume that the Navier-Stokes
equations have a unique solution we show that this solution will also be found
by a specific class of mixed schemes. Consider the first stage in (8-6)

q(1) = q∗ − α1∆t f(q∗)− β1∆t g(q(1)) (8-14)

with qn = q∗. Clearly, the solution q∗ satisfies this equation if and only if
α1 = β1, if we disregard the trivial case where f and g are separately zero.

The numerical schemes which we use have the form (2-44) and the first
stage of (8-6) is given by

(1 + α1∆tgq)∆q = −α1∆t(f(q(0)) + g(q(0))) (8-15)

where q(0) = q∗ and ∆q = q(1) − q(0). The right-hand side of (8-15) vanishes
because q(0) is the steady state solution yielding q(1) = q(0). Generalizing this
approach to a p-stage mixed scheme in (8-6) the following class of second order
steady-state-consistent mixed schemes is obtained

q(0) = qn

q(k) = q(0) − αk∆t
(
f(q(k−1)) + g(q(k))

)
, k = 1, . . . , p− 2

q(p−1) = q(0) − 1
2∆t

(
f(q(p−2)) + g(q(p−1))

)

q(p) = q(0) −∆tf(q(p−1))− 1
2∆tg(q(p))− 1

2∆tg(q(0))
qn+1 = q(p)

(8-16)

such that qn+1 = qn independent of the time step. Apart from the accuracy
and steady-state-consistency of a numerical scheme the numerical stability
plays an important role as well and will we addressed next.
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8.4 Stability

For the mixed schemes in (8-6) the best attainable stability properties are
coupled to the stability of the explicit scheme since the function g, which is
treated implicitly, may vanish and the mixed scheme reduces to the explicit
scheme. It is not clear how the mixing affects the explicit stability region. At
best the mixed scheme remains A-stable with respect to the complete explicit
stability region which we denote in the sequel by M-stable (Mixed). However,
the mixed schemes in general are not M-stable. First we show that the four-
stage scheme of section 8.3.1, which is not steady-state-consistent, is M-stable.
Second we study the stability properties of the steady-state-consistent schemes
in (8-16).

8.4.1 M-stable schemes

In this section we show that a subclass of the mixed schemes defined in (8-6)
is M-stable. As an illustration we take the four-stage scheme defined in 8.3.1.
In order to study the stability properties of the four-stage scheme we perform
a Von Neumann analysis [72] on the linear scalar equation

qt + aqx + bqy = 0 (8-17)

which represents a model of (8-2) and a and b are constants. Introducing
an appropriate grid and application of the method of lines to separate the
temporal integration from the spatial discretisation, as outlined in section 2.4,
a coupled set of ordinary differential equations is obtained for the solution q
in every grid point. If we assume that a steady state solution exists, the error
in the solution with respect to this steady state solution obeys the same set
of ordinary differential equations. Assuming periodic boundary conditions the
error can be represented by a Fourier-series and the Fourier-coefficients obey

dck

dt
= ẑck + ξ̂ck (8-18)

where ck corresponds to the k-th Fourier-coefficient of the error and ξ̂ and
ẑ are complex numbers which depend on the grid and spatial discretisation.
For the present flow application ẑ and ξ̂ are related to the fluxes f and g in
the partially implicit schemes respectively. Applying the four-stage scheme to
(8-18) and after some algebraic manipulations we get

ζ(z, ξ) =

∣∣∣∣∣
cn+1
k

cn
k

∣∣∣∣∣ =

∣∣∣∣∣
1 + p(z)− 1

4ξ
2

(1− 1
2ξ)2

∣∣∣∣∣ (8-19)
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where z = ∆tẑ, ξ = ∆tξ̂, ζ is the so-called stability function, p(z) = z(1 +
1
2z(1+ 1

3z(1+ 1
4z))), and |1+ p(z)| corresponds to the stability function of the

four-stage Runge-Kutta scheme. The stability region of a scheme is the set
of complex numbers z and ξ for which ζ ≤ 1. We will only consider those z
and ξ with negative or zero real part, since that corresponds to the dissipative
character of the Navier-Stokes equations. We now return to the aspect of
M-stability. For the four-stage scheme the following theorem holds.
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Figure 8-1: Stability region in the complex plane z-plane of the two-
and four-stage Runge-Kutta schemes in (8-4).

Theorem 8.1 The four-stage scheme in (8-6) with β1 = 0 and β2 = 0 is
M-stable.

Proof Assume ξ = x + Iy and 4(ξ) ≤ 0. Let Γ denote the stability region
of the four-stage Runge-Kutta scheme shown in figure 8-1. Because |1 + p(z)|
is the stability function for the purely four-stage explicit scheme, |1 + p(z)| ≤
1, ∀z ∈ Γ which results in the following bound on the stability function in
(8-19)

ζ(z, ξ) ≤
1 + 1

4 |ξ|2

|1− 1
2ξ|2

=
1 + 1

4x2 + 1
4y2

1 + 1
4x2 + 1

4y2 − x
(8-20)

This expression is smaller than one in view of the assumption that 4(ξ) ≤ 0
which proves that the scheme is M-stable. !

This theorem can be extended to a class of Mixed-schemes which yields
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Theorem 8.2 The schemes in (8-6) with βj = 0 for j = 1, . . . , p − 2 are
M-stable.

Proof Similar to the proof of theorem 8.1, where p(z) corresponds to the
underlying Runge-Kutta scheme in (8-4).

!

Although all these schemes are M-stable their stability region differs signifi-
cantly as is shown in figure 8-1 for the special cases of the two- and four-stage
schemes. Compared to the stability region of the two-stage explicit scheme,
which does not contain a part of the imaginary axis, the stability region of the
four-stage scheme contains a significant part of the imaginary axis.

8.4.2 Stability of steady-state-consistent schemes

In this section we study the stability of the three- and four-stage schemes
specified in (8-16). As in the previous section we can derive the stability
functions which are now given by

ζ3(z, ξ) =
∣∣∣∣
12− 4 ξ − 3 ξ2 + 12 z − 4 zξ + 6 z2 + 2 z3 + ξ3

(−3 + ξ) (−2 + ξ)2

∣∣∣∣

ζ4(z, ξ) =
∣∣∣∣
48− 28 ξ − 8 ξ2 + 7 ξ3 − ξ4 + p1(ξ)z + p2(ξ)z2 + 8z3 + 2z4

(−4 + ξ) (−3 + ξ) (−2 + ξ)2

∣∣∣∣
(8-21)

with p1(ξ) = 48− 28ξ + 4ξ2 and p2(ξ) = 24− 6ξ and the subscript on ζ refers
to the three- or four-stage scheme. For any z in the stability region of the
explicit three- or four-stage scheme we get

lim
|ξ|→∞

ζ3(z, ξ) = 1 and lim
|ξ|→∞

ζ4(z, ξ) = 1 (8-22)

respectively which agrees with the fact that the Crank-Nicolson scheme is A-
stable. In contrast to the four-stage scheme discussed in the previous section
it is straightforward to show that e.g. ζ4(3

2I,−7
5I) > 1, which implies that

the present four-stage scheme is not M-stable. However, there may exist an
area in the complex z-plane which does contain a significant interval of the
imaginary axis of the form [−dI, dI], with d a constant, and with respect
to which the scheme is stable for all ξ with 4(ξ) ≤ 0. In the following we
denote this property of the scheme by PM-stability (Partially Mixed). For
the stability analysis we are only interested in the case where 4(ξ) ≤ 0 and
thus the functions ζ3 and ζ4 are analytic. If we can find a closed curve in the
complex z-plane (as e.g. the boundary in figure 8-1) on which the scheme is



Partially implicit time integration schemes 149

stable and which contains a part of the imaginary axis as described above,
it follows from the maximum principle [1] that in the region enclosed by this
curve the scheme is stable as well and a PM-stable method is obtained.
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Figure 8-2: Stability curves for ζ3 in (8-21) in the complex z-plane for
ξ = α + Iy with y ∈ [−100, 100]. The upper dashed lines corresponds
to α = −1.0. The solid line represent the stability boundary of the
three-stage Runge-Kutta scheme (8-4).

To study the PM-stability we numerically determine the boundary in the
complex z plane for which ζ = 1. To this purpose we introduce a uniform grid
in the z-plane by

zi,j = −ih + Ijh, i = 0, . . . , 300, j = 0, . . . , 300 (8-23)

where h is the cell-width which we take 0.01. The influence of the complex
number ξ on the stability is determined for

ξj = α + Ijk, j = −1000, . . . , 1000 (8-24)

with α ∈ {0,−0.1,−0.5,−1} and k denotes the cell width which we take 0.1.
Only a small family of α values is considered which will become clear in the
following. The range of the imaginary part of ξ is quite large and in view of
the result in (8-22) this represents an approximation for |ξ| →∞ for fixed α.
Because ζ(z, ξ̄) = ζ(z̄, ξ) only the complex numbers with 5(z) ≥ 0 have to be
considered. The procedure is as follows. The value of the stability function
in (8-21) is determined for every z in (8-23) and every ξ in (8-24). If the
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Figure 8-3: Stability curves for ζ4 in (8-21) in the complex z-plane for
ξ = α + Iy with y ∈ [−100, 100]. The upper dashed lines corresponds
to α = −1.0. The solid line represent the stability boundary of the
four-stage Runge-Kutta scheme (8-4).

stability function is less than or equal to one for all ξ at a fixed α and z, the
corresponding z-value is identified as stable for this particular value of α. In
this way a stability region in the complex z-plane is obtained.

In figure 8-2 we have plotted the stability boundaries for the three-stage
scheme for α ∈ {0,−0.1,−0.5,−1}. If the z-plane is traversed in a vertical way
starting from 5(z) = 0, the boundaries correspond to the first time that ζ3 > 1
for fixed 4(z). In this way the different stability behavior on the imaginary axis
in the complex z-plane is emphasized for different choices of α. The solid line
represents the stability boundary of the explicit Runge-Kutta scheme which
corresponds to ξ = 0 and clearly contains a part of the imaginary axis. For
α = 0 two observations can be made: the stability region is considerably
smaller than the explicit stability region and the scheme is not stable on a
part of the imaginary axis. By decreasing the value of α the stability region
is increased and the scheme is stable on a part of the imaginary axis. For
α = −1.0 the explicit stability region is fully contained in the stability region.
In figure 8-3 a similar plot is presented for the four-stage scheme. Again for
α = 0 the scheme is not stable on the imaginary axis and the stability region
is reduced with respect to the explicit stability region. If the value of α is
decreased, the scheme becomes stable on a part of the imaginary axis. It is
clear that the three- and four-stage schemes are not PM-stable because no
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part of the imaginary axis is contained in the stability region for α = 0.
Although both the three- and four-stage scheme are not stable on the

imaginary axis for α = 0, the practical stability of the schemes (see section
8.5.2), which means that a stable and accurate simulation is possible, can be
explained by a viscosity argument. The upwind spatial discretisation defined in
section 2.3, which is also used for the flux in y-direction, results in an artificial
viscosity term as was shown in (2-20). This viscosity term contributes to the
negative real part of the Fourier footprint [72]. Also, physical viscosity is
present which contributes to the negative real part of the Fourier footprint
as well. Therefore, in practice the real part of ξ is never exactly zero and
the numerical scheme is in fact stable on a part of the imaginary axis in
the complex z-plane. This viscosity argument also applies to the flux which
is treated explicitly. From figures 8-2 and 8-3 it follows that the numerical
method is stable for a significant region in the complex z-plane (even for 4(ξ) =
0) when 4(z) is sufficiently small. This further emphasizes the practical use
of partially implicit schemes.

At this point some basic theoretical properties such as consistency, stability
and steady-state-consistency have been categorized for several families of par-
tially implicit schemes. With respect to stability and steady-state-consistency,
however, it is not clear which one should be preferred. Therefore numerical
simulations are performed next in order to determine which property is more
important.

8.5 Numerical results and implementation

8.5.1 Implementation

In this section we perform a simulation for the boundary layer test case defined
in chapter 5 and we take the solution at t = 10, 000 as the initial condition.
Every stage a nonlinear system of equations has to be solved corresponding
to the numerical system described in (2-42) and we introduce a pseudo-time
derivative in each stage. A priori there is no relation between the magnitude
of the pseudo-time step for every stage and for convenience we use the same
CFL-number to determine the pseudo-time step.

In chapter 6 we found that it sufficed to calculate the Jacobi matrix only
once during one time step. For the partially implicit scheme we encountered
convergence problems if the Jacobi matrix was frozen during all stages. There-
fore, we recalculate the Jacobi matrix every stage but freeze it during a stage.

For the fully implicit scheme we used the Gauss-Seidel method to approx-
imate the solution to the linear system which arises at every pseudo time step
(6-17). Because only the flux in y-direction is treated implicitly the resulting
Jacobi matrix consists of three bands of 4×4 matrices instead of five bands for
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the fully implicit scheme. In order to solve the corresponding linear systems
we use a block tridiagonal solver [88] which is a direct solver.

The accuracy time step for instantaneous flow quantities is ∆t = 4 as was
arrived at in chapter 6. However, as observed before, the total stability of
the numerical scheme is determined primarily by the stability of the explicit
part because the flux which is treated implicitly may vanish. Therefore we
calculate the stability time step in x-direction as in section 6.2.4 to obtain a
reference magnitude of the time step. To this purpose we take the solution at
t = 10, 000 which yields for the stability time step in x-direction, ∆tstab,x ≈ 2
which is obtained with CFL = 1.5, and which is well below ∆tacc.

8.5.2 Numerical results

In this subsection numerical results are presented for the M-stable four-stage
scheme and the steady-state-consistent two-, three- and four-stage schemes.

Steady-state-consistent schemes

In this subsection we present the numerical results for the two-, three- and
four-stage steady-state-consistent schemes. Similar to the results presented in
[6] for the scheme (8-1) we find that the two-stage scheme is not stable for all
time steps. For ∆t = 2 the numerical simulation was not stable. However,
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Figure 8-4: Instantaneous solutions obtained with the two-stage par-
tially implicit scheme (8-16) (dashed line) and the reference solution
(solid line) for ∆t = 1.
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for ∆t = 1 the numerical simulation proved to be stable and we were able to
use ∆τ = 103. With this setting of the numerical parameters a speed up of
1.5 is achieved. compared to the explicit case. In figure 8-4 we have plotted
the solution to the instantaneous quantities U1 and U2 defined in chapter 6
obtained with a time step ∆t = 1 and a local accuracy ε = 10−2. The quantity
U1 is resolved accurately and the more sensitive quantity U2 is resolved fairly
well. The fact that it is not possible to simulate with ∆tx,stab may be related to
the stability region of the explicit part of the two-stage scheme which is shown
in figure 8-1. Although the total scheme is M-stable the explicit stability
region does not contain a part of the imaginary axis.

The three- and four-stage schemes in (8-16) also do not contain a part of
the imaginary axis in the complex z-plane in case of zero viscosity. However,
as mentioned above we think that in practice sufficient viscosity is present.
We do, however, expect better stability properties compared to the two-stage
scheme since the explicit stability region of these schemes contains a part of the
imaginary axis. For the three-stage scheme a stable simulation with ∆t = 2
was not possible and the time step had to be decreased. A simulation with
∆t = 1 results in a solution with comparable accuracy as obtained with the
two-stage scheme.
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Figure 8-5: Instantaneous solutions obtained with the four-stage par-
tially implicit scheme (8-16) (dashed line) and the reference solution
(solid line) for ∆t = 2.

For the four-stage scheme a stable simulation with ∆t = 2 is possible. The
local accuracy is taken ε = 10−3 and in order to obtain a converged solution



154 CHAPTER 8

0 100 200 300 400 500 6002

1.5

1

0.5

0

0.5

1

1.5

2

2.5

3x 10 3

x

Figure 8-6: The mean skin friction obtained with the four-stage par-
tially implicit scheme (8-16) (dashed line) and the reference solution
(solid line) for ∆t = 2.

over the total sampling period a pseudo-time step of ∆τ = 1 was necessary.
In figure 8-5 the instantaneous U1 is plotted. Although the main trend is
captured reasonably well the two-stage scheme with ∆t = 1 results in a more
accurate solution as can be seen in figure 8-4. The deviation in U2 is even
more pronounced. At first U2 is captured rather well, see figure 8-5, but
after approximately 200 time units the solution starts to deviate more and
additional temporal frequencies arise. Increasing the local accuracy resulted
in a similar behavior. The mean skin friction is shown in figure 8-6. Clearly, a
simulation with ∆t = 2 yields an accurate solution of the mean skin friction.
Similar to the results of the two- and three-stage schemes the quantities U1
an U2 are resolved accurately for a simulation with ∆t = 1.

M-stable four-stage scheme

In this section we present the numerical results obtained with the four-stage
M-stable scheme defined in the previous section. Using the two-stage scheme
(8-6) with a time step of ∆t = 1 resulted in a solution with acceptable ac-
curacy. In order to compare the solution obtained with the two-stage and
four-stage schemes we first simulate with a time step ∆t = 1. To rule out the
influence of the local accuracy we take ε = 10−4. It turns out that it is not
possible to obtain this accuracy over the total sampling period with an infinite
pseudo-time step which was also observed in chapter 6 and we take ∆τ = 10
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Figure 8-7: Instantaneous solution U2 obtained with the M-stable four-
stage partially implicit scheme (dashed line) and the reference solution
(solid line) for ∆t = 1.

instead. The result for U2 is shown in figure 8-7. Although the main trend is
captured the solution differs significantly from the reference solution whereas
the solution obtained with the two-stage scheme for the same magnitude of the
time step does not show such a large deviation (see figure 8-4). This appears
to contradict the better stability properties of the four-stage scheme. Simu-
lation with a time step of ∆t = 0.2, which is comparable to the explicit time
step, results in an accurate solution which is in agreement with the second
order consistency of the four-stage scheme. This inadequacy of the four-stage
scheme is caused by the fact that it is not steady-state-consistent as was shown
in section 8.3.1.

8.5.3 Convergence characteristics

With the fully implicit Crank-Nicolson scheme used in chapter 6 an accurate
simulation with ∆t = 4 could be performed, which is a factor four larger
than the allowable time step obtained for the partially implicit methods in
the previous section. In order to compare the performance of the partially
implicit schemes to the Crank Nicolson scheme we make some observations
concerning the convergence properties and the required CPU time. To this
end we perform one time step starting from the solution at t = 10, 000 with
∆t = 1. For the fully implicit scheme it was shown in chapters 4 and 6
that the number of iterations which is required to obtain a certain accuracy



156 CHAPTER 8

depends on the magnitude of the pseudo-time step. Therefore the comparison
is made for a range of CFL-numbers in pseudo-time. As a representative of
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Figure 8-8: Convergence history of the second stage of the two-stage
scheme in (8-16) (solid) and the Crank-Nicolson scheme (dashed) as a
function of the number of outer iterations for two pseudo time steps.

the partially implicit schemes we take the two-stage scheme in (8-16). We
find that it is possible to take ∆τ = ∞ in the first stage which results in a
local accuracy, defined in (6-27), in the order of 10−4. For the second stage we
vary the pseudo time step as described above. In figure 8-8 the convergence
history for ∆τ = 1 and ∆τ = 1000 are presented as a function of the number
of outer iterations. Additional simulation were performed for ∆τ = 10 and
∆τ = 100 with comparable results to ∆τ = 1000. In order to explain the
results we study the total Jacobi matrix for the Crank-Nicolson scheme as in
(2-44) which can symbolically be written as

∂H

∂q
=

(
I

∆τ
+ I +

1
2
∆t

∂Fx

∂q
+

1
2
∆t

∂Fy

∂q

)
(8-25)

where Fx and Fy denote the numerical fluxes in x- and y-direction respectively.
For the first three decades the convergence rate of the fully and partially
implicit scheme is very similar for all pseudo time steps which may be explained
by looking at the dominant terms in (8-25). In chapter 7 it was shown that
∂Fx/∂q was the smallest term. Except for ∂Fx/∂q all other terms in (8-25)
occur in the Jacobi matrix for both schemes. Because the Jacobi matrix
which we use is already an approximation it appears that a additional small
change in the Jacobi matrix, in this case neglecting ∂Fx/∂q, does not have a



Partially implicit time integration schemes 157

significant influence on the initial convergence rate. On the other hand the
final residual level, which depends very sensitively on ∆τ (section 6.6), is quite
different for both methods. In [100, 101] not only the dependence of the steady
state solution on the magnitude of the time step was studied but also a large
set of different time integration schemes was studied. It was shown that the
convergence properties differ significantly for each scheme. The underlying
numerical system is very different for the partially implicit and fully implicit
schemes which may explain the difference of the final residual levels in figure
8-8. Additionally, it is observed in [100, 101] that it is most likely to find the
steady state solution of the underlying differential equation if the time step is
approximately equal to the stability time step of an explicit scheme. This is
confirmed by the numerical results for ∆τ = 1 where the final residual levels
are quite similar for both methods.

If we look at the CPU time per iteration the following observations can
be made. For the fully implicit scheme in chapter 6 we use the Gauss-Seidel
method for the linear process in (2-44). However, for the partially implicit
scheme we use a block tridiagonal solver, which is a direct solver. Because the
Jacobi matrix is frozen, see e.g.(6-17), the linear system is inverted only once.
For the Gauss-Seidel method this implies that the diagonal blocks are inverted
only once (see 4-16) whereas a LU-decomposition is performed once for the
block tridiagonal matrix which is considerably more expensive. Therefore, the
total CPU time which includes the storage, determination and inversion of
the Jacobi matrix decreases only with a factor of about 1.25 for the partially
implicit scheme. The computational costs of one iteration in (6-17) consists
of two Gauss-Seidel sweeps for the fully implicit scheme and a forward and
backward iteration in case of the block tridiagonal solver for the partially
implicit scheme. We find that the speedup factor of one pseudo time step,
without taking the storing, determination and inversion of the Jacobi matrix
into account, is about a factor 1.86 per iteration in favor of the partially
implicit scheme which can be understood as follows. In order to solve the
linear system for the partially implicit scheme after the LU-decomposition a
forward and backward iteration sweep is necessary which are quite similar to
one Gauss-Seidel sweep. Therefore a speedup factor of about 5

3 is expected
due to the smaller computational stencil of the Jacobi matrix.

Summarizing we may conclude that for the present flow application the
Crank-Nicolson scheme is about a factor two more efficient than the partially
implicit scheme. However, compared to an explicit code a significant speed
up factor can be obtained for a grid with high aspect ratio as will be shown
next. Therefore, in case the memory requirements become a bottleneck the
partially implicit methods constitute an attractive alternative to fully implicit
methods.
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8.5.4 High aspect ratio

For the present test case the partially implicit schemes yield an accurate so-
lution using a time step of ∆t = 1 which corresponds approximately to the
stability time step in x-direction (see section 8.5.2). However, this time step
is only about a factor 5 larger than the stability time step for the reference ex-
plicit scheme. The reason is the fact that the current aspect ratio is relatively
small. Because of this the full potential of these partially implicit schemes is
not exploited. In order to further investigate the performance of the partially
implicit schemes without turning to another test case we artificially increase
the aspect ratio of the grid. To this purpose we increase the stretching ratio
of the grid, defined by ∆ymax/∆ymin, to 89.5 compared to 8.6 for the origi-
nal grid (see section 6.3), where ∆ymax is kept approximately the same such
that the aspect ratio increases mainly near the solid wall. The solution at
t = 10, 000 on the original grid is interpolated onto the refined grid using a
fourth order interpolation technique. Because the time step limitation for the
partially implicit schemes is caused by the stability time step in x-direction
an accurate simulation with approximately this time step should be possible
on the refined grid as well since the grid is unchanged in x-direction and the
physical properties of the flow are unaltered. Due to the specific stretching
of the grid (see section 6.3) the locations where the quantities U1 and U2 are
measured on the original grid do not correspond to a grid node on the refined
grid. Therefore two new locations on the refined grid are taken nearest to the
corresponding locations on the original grid.

As a representative of the partially implicit schemes we take the steady-
state-consistent two-stage scheme. Simulations are performed for several time
steps including ∆t = 1 which was used for simulations on the original grid.
The solution is determined with a local accuracy of ε = 10−2 each stage and it
was possible to take a pseudo time step∆τ = 103. In figure 8-9 we have plotted
the quantities U1 and U2 for various time steps where solid lines represent the
reference solution obtained with the explicit scheme on the refined grid. The
quantity U1 is resolved very well for all time steps and the quantity U2 is
resolved quite accurately as well even for ∆t = 1 indicating that the time step
is determined by the stability time step in x-direction. Additional simulations
were performed with the three-stage scheme with similar results. Due to the
grid refinement in y-direction the stability time step for the explicit scheme
decreased with approximately a factor 16 whereas the time step could remain
the same for the partially implicit scheme. The total speedup for the two-stage
scheme, using ∆t = 1, is approximately a factor 20. The above results show
that for simulations with a high aspect ratio the partially implicit schemes
perform very well. For the current test case on the refined grid the aspect
ratio at the solid wall is approximately 160. For other type of flows where the
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Figure 8-9: The instantaneous quantities U1 and U2 obtained with the
two-stage scheme on the refined grid for various ∆t with local accuracy
ε = 10−2. The solid line represents the reference solid obtained with the
explicit scheme.

aspect ratio is much higher, e.g. the viscous turbulent flow around an airfoil,
the partially implicit schemes therefore constitute an attractive alternative to
explicit schemes with respect to CPU time.

8.6 Conclusions

In this chapter we focused on the development of partially implicit second order
time integration schemes. A first order partially implicit scheme was already
successfully used in Ref. [6]. However, due to the first order accuracy of the
scheme a large number of time steps per period of the dominant unsteady flow
quantity was needed. Therefore, a higher order accuracy is required.

In order to obtain a class of second order partially implicit schemes we
mixed the second order Crank-Nicolson scheme with a class of explicit Runge-
Kutta schemes with an arbitrary number of stages. It was shown that the last
two stages of the mixed scheme determine the second order accuracy and that
preceding stages only influence the stability of the scheme. For our present
flow application we split the total flux into a contribution of the flux in x-
and y-direction. However, in the derivation of the partially implicit scheme
no assumptions on the splitting into an explicit and implicit part are made
and the application of these schemes is not restricted to the current splitting.
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Next to stability properties of the numerical scheme we found that the ability
of a scheme to yield a steady state solution which is independent of the time
step is an important requirement. Although the four-stage scheme in section
8.4.1 is M-stable, an accurate solution can only be obtained if a very small
time step is used because the scheme is not steady-state-consistent. Hence,
a class of steady-state-consistent second order schemes is presented in section
8.3.2. Numerical simulations were performed with the two-, three- and four-
stage scheme. A simulation with the four-stage scheme and time step ∆tstab,x,
corresponding to the explicit stability time step in x-direction, did not yield an
accurate solution of the instantaneous flow quantities although the mean-skin
friction is resolved quite accurately. For the two- and three stage schemes a
stable simulation with ∆tstab,x was not possible which can be explained by
the stability properties of these schemes outlined in section 8.4.2. All schemes
yield an accurate solution for ∆t = 1 which is smaller than ∆tstab,x which
is approximately 2.0 at a CFL-number of 1.5. To our experience this CFL-
number is the upper limit for a stable numerical simulation with the present
spatial discretisation. In this light we see that these schemes perform rather
well and that the stability is indeed determined by the stability in the x-
direction. In section 8.4.2 we observed that these schemes are not stable on
the imaginary axis in the complex z-plane for ξ = 0. However, this need not
be a restriction for practical use because the presence of viscosity (numerical
or physical) contributes to the negative real part of ξ. Hence, the partially
implicit schemes are stable on a part of the imaginary axis in the complex
z-plane.

For the present flow application the aspect ratio of the grid was too small
for the partially implicit scheme to outperform the explicit solver with respect
to CPU time. However, for flows where a higher aspect ratio is required such
as e.g. viscous turbulent flow around a pitching airfoil, the partially implicit
schemes become interesting as was already shown in Ref. [6] with a first order
partially implicit scheme. This was confirmed by the numerical results in
section 8.5.4 where the aspect ratio of the grid was increased and the speed up
factor compared to the explicit code was about 20. For large scale applications
such as e.g. a 3D flow over a flat plate the memory capacity may become a
bottleneck for a fully implicit scheme and the benefits of the partially implicit
schemes with respect to the memory storage are clear. With respect to the
difference in smoothing properties in the multi-grid method for the x- and
y-direction in the previous chapter we observe that in case a large number of
nonlinear iterations is necessary in the stages of the partially implicit scheme,
the multi-grid method may accelerate the convergence process because good
damping properties were observed in the y-direction in the previous chapter.
Therefore we expect that for large scale flow applications with high aspect
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ratio the partially implicit schemes may constitute an attractive alternative
for explicit or fully implicit schemes.



162 CHAPTER 8



Chapter 9

A dynamical time step
criterion

9.1 Introduction

The development of a dynamical time stepping method for unsteady flow is a
major motivation for much of the work in this thesis. With such a criterion it
would be possible to efficiently integrate the Navier-Stokes equations in time.
If one would adopt a hybrid method involving an explicit as well as an implicit
scheme then the accuracy time step could control the selection of either one
during the simulation. Given the magnitude of the accuracy time step such a
switch is possible if specific convergence characteristics, as studied in chapter
6, and the efficiency of the implicit scheme are known.

In order to measure the temporal accuracy two instantaneous flow quan-
tities at different locations were monitored. Relating the temporal error to
the spatial discretisation error as in (6-23) proved to be a reliable criterion
to determine the accuracy time step. However, this does not directly give us
a dynamical time step criterion. A first suggestion would be to use Fourier
analysis on the time signal of the instantaneous quantities possibly supple-
mented by monitoring more quantities. The dominant modes could then be
used as a measure for the required time step. Although this appears to be an
efficient and simple method the main drawback lies in the fact that a rather
lengthy time signal must already be available for a reliable Fourier decompo-
sition. Consider e.g. the time signal U1 in figure 6-6. The dominant mode
has a period of about 400 time units which means that the proposed Fourier
decomposition method can become effective only after quite a long simulation
time. For flows that vary rapidly in time this argument is not valid but in
these cases an explicit time integration method is probably the best choice.

In Ref. [45] a study was performed of an extended POD (Proper Orthog-
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onal Decomposition) applied to a 2D temporal mixing layer. For convenience
the extended POD method is referred to as POD method in the following. The
temporal behavior of this flow can roughly be described as follows: initially
the perturbation grows exponentially in time and vortices are formed. The
changes in the time signal are relatively small in this regime. When the mixing
starts the rollers undergo pairing and merge and the solution changes more
rapidly in time whereas in the final stages the signal decays due to viscous
effects. The time intervals in which one eigenfunction could capture p% of the
energy was determined. Exactly, this feature can be extended as a method
to predict the accuracy time step. Application of this idea to the temporal
mixing layer resulted in relatively large time intervals in the initial phase af-
ter which the length of the time intervals decreased considerably during the
strong mixing process and increased again in the viscous phase. Clearly, this
agrees well with the physical behavior in time as described above and will be
pursued further in this chapter.

In this chapter we show some preliminary results of the POD method ap-
plied to the boundary-layer flow described in chapter 6 which is a considerably
more complicated flow than the temporal mixing layer. In addition the flow
develops both in time and space. Although the temporal behavior of this
flow is quite smooth and a constant time step is possible the question remains
whether the POD method predicts the same smooth behavior. The contents
of this chapter is as follows. We start with a brief discussion of POD in sec-
tion 9.2 after which the numerical results are presented in section 9.3. Finally,
conclusions are drawn and recommendations made in section 9.4.

9.2 Proper orthogonal decomposition

The POD method is used to analyze and model large data sets in a wide
variety of engineering disciplines. Especially in fluid dynamics large data sets
occur during numerical simulations. In this section we discuss some elementary
aspects of the POD method 1. For more details we refer to literature e.g. Refs
[5, 44, 45]. The POD method used here extracts the most important spatial
structures from the data. These spatial structures, which are ordered by their
energy contents (see below), form a set of optimal base functions.

Consider a signal S(x, t) for x ∈ D ⊂ Rn, n = 1, 2, . . . and t ∈ T = [0, T ].
In the POD analysis the spatial structures are constructed such that the time-
averaged projection of the spatial structures on the signal S is as large as

1The text in this section closely follows the work of W.L. IJzerman from Ref. [45].
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possible. The first structure, φ1, is a solution of the maximization problem:

max
φ

{∫
T
[∫

D S(x, t)φ(x) dx
]2

dt

T
∫
D φ(x)2 dx

}
. (9-1)

The second structure, φ2, is taken orthogonal to the first and is characterized
by the constrained optimization problem:

max
φ

{∫
T
[∫

D S(x, t)φ(x) dx
]2

dt

T
∫
D φ(x)2 dx

s.t.
∫

D
φ1(x)φ(x) dx = 0

}
. (9-2)

Other structures are found successively in an analogous manner.
Optimization problems such as (9-1) and (9-2) result in a symmetric eigen-

value problem, in which the general structures φk are the eigenfunctions:
∫

D
Rs(x, x′;T )φ(x′) dx′ = µ2φ(x). (9-3)

with the spatial correlation function, Rs, defined by

Rs(x, x′;T ) =
1
T

∫ T

0
S(x, t)S(x′, t) dt (9-4)

The square root of the eigenvalues of this problem are called the singular values
and numbered in descending order: µ1 ≥ µ2 ≥ · · · > 0. The space spanned by
the eigenfunctions {φk}∞

k=1 contains the signal S(x, t), i.e:

S(x, t) =
∞∑

k=1

µkψk(t)φk(x), (9-5)

where the temporal coefficients are given by:

ψk(t) =
1
µk

∫

D
S(x, t)φk(x) dx, (9-6)

for k = 1, 2, . . . , see [44]. Due to the factor 1/µk these temporal coefficients
are normalized, which can be shown using the eigenvalue problem (9-3).

The square of the kth singular value can be interpreted as the energy
represented by the kth structure:

µ2
k =

1
T

∫

T

[∫

D
S(x, t)φk(x) dx

]2
dt (9-7)

The sum of the squares of the first N singular values gives the amount of
energy captured by the first N structures. The number of structures required
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to capture a part p, for example 99%, of the total energy gives an indication
of the complexity of the signal and is interpreted as the dimension, dp, of the
signal, [5]:

dp=

{
N |

N∑

k=1

µ2
k ≥ p

∫

T

∫

D
S2(x, t)dxdt = p

∞∑

k=1

µ2
k = pEtot

}
. (9-8)

where Etot stands for the total energy.
In practice (9-3) cannot be solved numerically since the matrix for the

discrete eigenvalue problem is too large; it is an N × N matrix where N
equals the number of grid points used in the spatial discretisation which in
our application equals 193 × 65. Instead of (9-3) the temporal equivalent is
solved numerically:

∫

T
Rt(t, t′)ψ(t′)dt′ = µ2ψ(t), with

Rt(t, t′) =
∫

D
S(x, t)S(x, t′)dx,

(9-9)

where Rt denotes the temporal correlation function. The eigenfunctions, spa-
tial structures, of (9-3) are related to the eigenfunctions ψk by:

φk(x) =
1
µk

∫

T
S(x, t)ψk(t)dt. (9-10)

The size of the matrix for the discrete version of (9-9) depends on the number
of snapshots which is required for a suitable accuracy in µk and in our appli-
cation is less than 5000. The numerical integrations in the above formulas,
(9-9) and (9-10), are performed using the trapezoidal rule.

9.3 Numerical results

The results presented in chapter 6 for the shock boundary-layer flow indicate
that a constant time step of ∆t = 4 resolves the instantaneous quantities
accurately whereas ∆t = 8 is clearly too large. In this section we explore
the possibilities to use the POD method as a tool in the dynamical time
step choice. The POD method should predict a nearly constant time step
in between ∆t = 4 and ∆t = 8. Since we are interested in a time accurate
simulation the small temporal structures have to be resolved as well. With
respect to this point it would be better to perform a POD on the field P (x, t) =
S(x, t)−S(x) where S represents the mean flow field over the sampling period
T , because the current flow is statistically stationary. However, in general the
mean flow field is not known which would limit the applicability of the current
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approach. Therefore, we perform the POD analysis on the flow field S(x, t).
Since, the mean flow contains a large fraction of the energy a larger fraction
p than recommended in Ref. [45] i.e. p > 0.99, may be necessary.

For the data sampling we use the explicit time integration method de-
scribed in section 4.2.3 with ∆t = 0.2 and we store the total flow field every
time step during the sampling period from t = 10, 000 to t = 11, 000. Although
in practice, if the time step is dynamically determined, not so many fields are
available, it is convenient for this exploratory research to have an abundance
of samples. The determination of the interval in which the signal can be rep-
resented by one structure proceeds as follows. Let us assume that we want
to resolve a fraction p of the total energy in the quantity S(x, t). We start
with the interval [t0, t1], where t0 and t1 denote the subsequent time levels,
and determine the energy contained in the first eigenfunction as in (9-7). If
this is larger than the required fraction p we enlarge the interval with the next
time step and again determine the energy contained in the first eigenfunction.
This is repeated for [t0, tj ], j = 1, 2 . . . until the signal can no longer be rep-
resented by one eigenfunction with the desired energy contents. The length
of the interval so obtained may be used as a measure for the accuracy time
step. If the signal varies rapidly then already after a short period the energy
constraint in (9-8) will be violated and for mildly varying signals this violation
will take much longer. This is reflected directly in the lengths of the intervals
and thus can be used to govern the values of ∆t. As we will show this length
depends sensitively on the value of p.

First we take the pressure field as the signal S(x, t) to be used in the POD
analysis. In order to obtain a smoother graph the length of the interval in
which only one eigenfunction captures a fraction p of the energy is determined
for every sample field, which means that this field is considered as the initial
field at t0. In figure 9-1(a) the results are presented for three different values of
(1−p): 10−4, 10−5 and 10−6. Although the magnitudes of the sub-intervals for
different fractions p differ significantly it appears that there is a large similarity
between the POD signals for different values of p. Taking the quotient of the
scaling factors we obtain 66.2/19.8 ≈ 3.3 and 19.8/6.2 ≈ 3.2 which indicates
some kind of scaling law. With some tedious work involving a Taylor expansion
around t = t0 of S(x, t), µ and φ in ∆t one can show that

(1− p) ∝ (∆t)2 (9-11)

The derivation of this property can be found in [18] but exceeds the current
purpose. With respect to the current choices of (1−p) a factor

√
10 is predicted

by (9-11) which agrees well with the numerical results, i.e. the values 3.3 and
3.2, indicating that the time steps are still within the linear region. This
scaling property can also be used to make the POD method more efficient.
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Figure 9-1: The length of the sub-intervals in (a) for three values of
p scaled by 66.2, 19.8 and 6.2 respectively and the unscaled length for
1− p = 10−6 in (b).

Assume we know the desired value of p say p∗. For small (1− p) less work is
required to calculate the length of the time interval since it involves less data.
The length of this interval can then be scaled to the corresponding length of
the interval for (1− p∗) using the scaling law in (9-11).

Clearly, the value of p plays an important role in the final choice of the
time step (sub-interval length). As mentioned above the predicted value of the
time step should be somewhere between ∆t = 4 and ∆t = 8. In figure 9-1(b)
the choice of (1− p) = 10−6 yields a proper estimate of the magnitude of the
time step. In general, however, it is not obvious how to choose the value of p
and this is a topic of current research. If the velocity field is used as the signal
S(x, t) this leads to the same conclusions.

The time step sequence following from (1 − p) = 10−6 depicted in figure
9-1(b) is used in a simulation with the fully implicit Crank-Nicolson scheme.
The numerical parameters are set equal to the test case in section 7.2, i.e.
∆τ = 1.0 and ε = 10−3. We observe that the results of the mean skin friction
are indistinguishable from the reference solution which is in agreement with
the results in chapter 6 and chapter 8. The results of this simulation with
non-uniform time step for U1 and U2 are shown in figure 9-2. Clearly, U1 is
captured very well and the non-uniformity in the time step appears to have
no effect on the accuracy. The largest deviations in U2 in time are similar to
the results shown in figure 7-1 with a uniform time step of ∆t = 4. In total
the temporal behavior is captured rather well and we observe that the time
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Figure 9-2: The instantaneous solutions U1 and U2 as a function of
time obtained with the Crank-Nicolson scheme with non-uniform time
step (dashed) and explicit reference solution (solid).

sequence is based on a “non-optimal” value of p. Increasing the value of p,
thus decreasing the time step, will result in a higher accuracy. However, these
first results are very promising and further research of the use of POD for a
dynamic time step criterion seems worthwhile.

Recently we have found a way to efficiently determine the accuracy time
step with a minimum of memory storage and computational effort. Previously,
we determined the length of the time interval in which only one eigenfunction
contains a fraction p of the total energy. To achieve this we used a sufficiently
large sequence of the signal field S(x, t) in time. This requires a large com-
putational overhead for complex three dimensional applications as explained
above. However, there appears to be an attractive alternative to the suggested
extended POD method which avoids this large overhead. In this method we
define a new measure for the total energy given by the scaled correlation

p̂ =
|
〈
Sn, Sn+1〉 |

||Sn|| ||Sn+1|| (9-12)

where p̂ denotes the energy, the superscript denotes the time level and the
innerproduct is defined as

〈f, g〉 =
∫

D
fg dx (9-13)

From Schwarz’ inequality it follows that 0 ≤ p̂ ≤ 1. By means of a Taylor
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expansion around time level tn we obtain again

(1− p̂ ) ∝ (∆t)2 (9-14)

similar to the scaling law of the extended POD method in (9-11). A compari-
son of the Taylor expansions of the two scaling formulas reveals that the factor
in front of ∆t2 differs only by a factor of 6. In this way we can relate the new
method to the extended POD method by taking this factor into account. To
test the new method we dynamically determine the time step whereas earlier
we determined the time series a posteriori with a large data set (see figure
9-1). All numerical parameters are chosen the same as in the previous case
which means that for the desired value of (1 − p) we take 10−6. Since we
need only two signal fields to determine p̂ we use the scaling law in (9-14) to
determine the time step corresponding to the desired energy level. In figure
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Figure 9-3: Magnitude of the accuracy time step determined a posteriori
by the extended POD method (solid) and a priori by the correlation
method (dashed).

9-3 the time step sequences for the extend POD method and the correlation
method are plotted. Clearly, the dynamic time step sequence captures the
dynamical behavior predicted by the extended POD method. There appears
to be a small time lag for the dynamically determined time sequence. This
can be explained by the fact that the time step in the dynamic case is deter-
mined by the history of the time signal. However, we observe that the time
lag is minimal since only the last two signals in time are used together with
the scaling law. The solution obtained with this dynamic approach has an
acceptable accuracy comparable to the solution presented in figure 9-2. We
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conclude that this new approach avoids the large overhead of the extended
POD method. The computational costs are negligible and no extra memory
storage is required.

9.4 Conclusions

In this chapter some preliminary results were presented showing the use of the
POD method to dynamically determine the accuracy time step. The shock
boundary layer flow of chapter 6 is used as a test case. In order for the POD
method to be useful in flows with a more complicated temporal behavior the
predicted dynamic time step should lie in the vicinity of the accuracy time
step determined in chapter 6. The amount of energy to be contained in the
first eigenfunction plays an important role. For the specific choice of (1 −
p) = 10−6 the predicted time step lies well within the desired region. Further
numerical experiments confirm the scaling property between (1−p) and ∆t in
(9-11) which indicates that the time steps are still within the linear region. A
numerical simulation with the Crank-Nicolson scheme using a time sequence
following from (1− p) = 10−6 yields solutions with acceptable accuracy which
emphasizes the promising use of POD for dynamically determining an accuracy
time step.

However, at this point we would like to make the following remarks on the
current approach. First we note that the value of p has a strong influence on
the length of the sub-intervals in which a fraction p of the energy is contained
in only one eigenfunction. In general it is not yet clear how to determine an
appropriate value of p. Second the POD method was applied to data which
was already created which a sufficiently small time step. The dynamic use
of the POD during a simulation with a relatively large time step has not yet
been performed.

With respect to the computational work we remark that the amount of
work required to calculate the principle eigenvalue is about TNM where T
stands for the number of samples in a time interval and N,M represent the
number of grid points in x and y direction respectively. For large N and M
this may become very costly. An obvious solution to this problem is to reduce
the number of data points used in the POD method. In general this can be
achieved e.g. using only the data from every other grid point or to take a
specific region of the computational domain into account if at fore hand some
flow characteristics are known. A POD analysis on a data set reduced up to
a factor 8 in both directions still gave results rather similar to the results for
the total data set indicating that this approach is quite useful and promising.

Finally, we emphasize a feature of the scaling property in (9-11). Assume
we know the desired value of p say p∗. Computationally it is more efficient to
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calculate the length of the time interval for small (1− p) since it involves less
data. The length of this interval can then be scaled to the corresponding length
of the interval for (1− p∗) using the scaling law in (9-11). The significance of
this scaling property is emphasized in the use of the highly efficient correlation
method (9-12). This method does not have the overhead of the extended POD
method as described above. The computational costs are negligible and no
additional memory storage is required because it only uses the signal fields of
the last two time steps. However, in general the corresponding energy level of
p̃ is not equal to the desired energy level p∗. Application of the scaling law
yields the accuracy time step corresponding to p∗.



Chapter 10

Conclusions

In this chapter we discuss to what extent the research aims defined in section
1.3 are achieved. Each chapter finishes with extensive conclusions and we refer
to the corresponding sections for more details. The numbers of the following
items correspond to the research aims described in section 1.3.

1. We find that for steady flows containing shock waves the Euler backward
scheme in combination with the first order Roe approximation of the flux
Jacobi matrix method and a basic linear solver such as the Gauss-Seidel
method form a suitable implicit method. The Crank-Nicolson scheme in
combination with the previously mentioned implicit scheme in pseudo
time yields a suitable numerical method for unsteady flow applications.

2. A robust multigrid method is obtained if an implicit scheme is used as a
smoother to obtain the steady state of a transonic flow around an airfoil.

3. By means of a domain decomposition an acceptable parallelization level
is obtained for the implicit scheme.

4. In chapter 7 we showed that no multigrid acceleration can be obtained
if the terms related to the time integration dominate the smoothing
operator. Therefore, we conclude that multigrid results obtained for
steady flow are not directly transferable to unsteady flow in general.

5. For unsteady flow without an external unsteady flow condition we find
that the global spatial discretisation error is a good measure of reference
for the allowed temporal error.

6. Simulations are performed in section 6.5 for various magnitudes of the
time step and local accuracies which illustrate the relation between ∆t
and εnonlin.
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7. It appears that an extended POD analysis is an appropriate tool to
dynamically determine the accuracy time step. With this method the
maximum length of a time interval such that a fraction p of the total
energy is contained in only one spatial structure is determined. The
length of such an interval is a measure for the temporal behavior of the
flow and can be used to predict the accuracy time step.

In addition to item 7 we observe the following. In chapter 9 some pre-
liminary results were presented on the use of POD as a tool to determine the
accuracy time step. However, further research is required. One of the remain-
ing questions is the determination of a proper value of p. The value of p has a
significant influence on the resulting time step. However, at this point it is not
clear how to determine an appropriate value of p. With respect to efficiency
we remark that the computational costs of the POD analysis can be signifi-
cantly decreased in two ways. First, a reduction of the data set in the POD
analysis, leaving only 2% of the data, still yielded quite similar results which
gives confidence on the practical use of this method for 3D simulations. Sec-
ond, the scaling property between (1− p) and ∆t can be exploited to increase
the efficiency.

Finally, we observe that the moderate improvements with respect to re-
quired CPU time of the implicit and partially implicit schemes compared to
the explicit reference method are related to the present unsteady test case.
The stability time step in x-direction is almost equal to the accuracy time
step for instantaneous quantities determined in chapter 6. Since the aspect
ratio is rather small, i.e. 16.5, no sensational speedup can be expected es-
pecially because of the higher computational costs of implicit schemes. Also,
the possibilities of the partially implicit schemes described in chapter 8, which
are typically suited for flow problems with high aspect ratio, do not come out
well. In this sense the present test case constitutes a worst case and for more
suitable flow problems significant improvements with respect to CPU can be
expected.
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Summary

This thesis deals with implicit time integration methods for compressible flow
containing shock waves. Next to the question about a suitable implicit time
integration scheme for steady and unsteady flow the key questions concern
suitable accuracy criteria on the time step and a dynamical determination of
the accuracy time step during a simulation.

In order to study the influence of the linear solver and the required degree
of approximation of the flux Jacobi matrix the unsteady shock tube problem
was simulated in chapter 3 using the Crank-Nicolson scheme for the time
integration. Simulations revealed that the required accuracy with which the
linear system arising at every pseudo time had to be solved in order to obtain
a minimum number of outer iterations was only about three or four decades
corresponding to very few inner iterations. Therefore, we conclude that for
these types of flow basic iterative methods such as the Gauss-Seidel method
are the most efficient. The influence of the approximation of the flux Jacobi
matrix was also studied. We found that the additional costs of determining,
storing and inverting the full flux Jacobi matrix do not outweigh the additional
costs of more outer iterations in case the flux Jacobi matrix is approximated.

These results were incorporated into the implicit numerical method to
simulate a transonic inviscid flow around an airfoil in chapter 4. The speedup
factor obtained with the implicit scheme compared to the explicit reference
method is considerable. However, there is a difference in the steady state
solution obtained with both methods. With the implicit scheme we obtain a
machine accurate steady state solution whereas with the explicit scheme the
convergence stalls at a finite residual level. This difference was studied and we
concluded that there does not exist a steady state solution. It appears that a
small physical instability in the wake region is present which is not captured
by the implicit scheme due to the dissipative nature of this scheme.

In chapter 5 we discussed the multigrid and parallel performance of the
implicit scheme. The multigrid performance of an explicit scheme for a tran-
sonic test case is very sensitive to the multigrid parameter setting [15]. The
implicit scheme proved to be a very robust smoother and multigrid acceleration
was obtained without careful parameter tuning. We showed that acceptable
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parallel performance is achieved by means of a domain decomposition. For
some subdomain divisions convergence problems were encountered which are
related to the accuracy with which the linear system arising at every pseudo
time step is solved at the subdomain boundaries. By increasing the accuracy
convergence is obtained for all subdomain divisions.

A two-dimensional unsteady shock boundary-layer flow was simulated in
chapter 6. The second order implicit Crank-Nicolson scheme was used for the
time integration. In order to solve the nonlinear system of equations arising
at every time step a pseudo time derivative was introduced and the implicit
method of chapters 4 and 5 was used to advance the solution towards the
desired solution at the next time level. Because no external unsteady flow
condition was prescribed the global error induced by the time integration over
a sampling period was related to the global spatial discretisation error. A set
of requirements on the global error was formulated which relate the time step,
the local accuracy and the relaxation parameter. Computations show that
with suitable numerical parameters the requirements are obeyed and proper
solutions of the flow problem are obtained. The corresponding accuracy time
step depends on the type of flow quantity. Without any code optimization
a speedup factor with respect to the explicit reference method of 9.2 and
3.7 is obtained for mean and instantaneous flow quantities respectively. For
large time steps convergence problems were encountered which are related to a
sensitive dependence on the relaxation parameter in pseudo time. The pseudo
time step appears to be a bifurcation parameter which agrees with results
presented by Yee and Sweby [100, 101].

For a relevant choice of the numerical parameters the implicit code cannot
outperform the explicit reference code. In order to try to accelerate the con-
vergence in pseudo time multigrid is applied. It turns out that no convergence
acceleration can be obtained. An order of magnitude analysis revealed that
the terms related to the implicit time integration in physical time dominate
the smoothing operator. As a result high and low frequencies in the error
are damped equally and no smoothing is obtained. In order to obtain proper
smoothing the terms related to the spatial derivatives should dominate the
smoothing operator. This is confirmed by a study of a model equation where
criteria on the time step and the pseudo time step are formulated such that the
spatial derivatives dominate the smoothing operator. For the shock boundary-
layer flow these criteria do not comply with the demand of sufficiently small
∆t for time accuracy which explains the bad multigrid performance.

Although the overall smoothing properties are not good there appears to
be sufficient smoothing in y direction. Therefore, we suggest to treat the
flux in x-direction explicitly and the flux in y-direction implicitly. To this
purpose a new class of second order partially implicit schemes, which are a
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mixture of the second order Crank-Nicolson scheme and the compact storage
Runge-Kutta schemes, is developed in chapter 8. Next to consistency and
stability the ability of the partially implicit schemes to yield a steady state
independent of the time step plays an important role in order to obtain an
accurate solution. However, for these schemes optimal stability properties
and steady-state-consistency do not go together. Simulations indicate that
the latter is the most stringent requirement. Suitable stability properties are
obtained if a small amount of numerical dissipation is added. For large scale
applications the memory capacity may become a bottleneck and we expect
that for flow applications with high aspect ratio the partially implicit schemes
constitute an attractive alternative to explicit or fully implicit schemes.

Some preliminary results on a dynamical time step criterion were presented
in chapter 9. An extended POD analysis is used to determine the maximum
length of a time interval such that a fraction p of the total energy is contained
in only one spatial structure. The length of such an interval is a measure for
the temporal behavior of the flow and can be used to predict the accuracy time
step. The POD method is applied to the shock boundary-layer flow which for
a specific value of p resulted in a non-uniform sequence of time steps within the
time accuracy bounds determined in chapter 6. Simulation with this specific
time sequence yields a solution with acceptable accuracy which indicates the
promising use of POD as a tool to dynamically determine the accuracy time
step.



Samenvatting

Het hoofdonderwerp van dit proefschrift is de studie van impliciete tijdsin-
tegratiemethoden voor compressibele stromingen met schokgolven. Naast de
voor de hand liggende vraag wat een geschikte impliciete methode is voor
stationaire en instationaire stromingen ligt de nadruk op het bepalen van ge-
schikte nauwkeurigheidscriteria en de dynamische bepaling van de nauwkeu-
righeidstijdstap.

De specifieke keuze van een lineaire oplosmethode en de orde van nauw-
keurigheid waarmee de Jacobimatrix van de flux wordt bepaald hebben een
grote invloed op het convergentiegedrag van de numerieke methoden. Om deze
invloed te bestuderen simuleren we in hoofdstuk 3 het tijdsafhankelijke schok-
buis probleem met de Crank-Nicolsonmethode. Uit de berekeningen volgt dat
het lineaire stelsel dat ontstaat bij elke pseudotijdstap slechts tot drie of vier
decaden nauwkeurig opgelost hoeft te worden om een minimaal aantal buite-
niteraties te verkrijgen. Hierdoor is slechts een beperkt aantal binneniteraties
nodig zodat eenvoudige iteratieve methoden zoals de Gauss-Seidelmethode het
meest efficiënt zijn. Tevens hebben we de invloed van de orde van nauwkeu-
righeid van de Jacobimatrix van de flux bestudeerd. De extra kosten voor
het opslaan, bepalen en inverteren van een nauwkeurige Jacobimatrix staan
niet in verhouding tot de extra rekenkosten van extra buiteniteraties bij een
minder nauwkeurige Jacobimatrix.

Deze resultaten zijn verwerkt in een impliciete numerieke methode om een
transsone wrijvingsloze stroming rond een vleugelprofiel te simuleren. Hoewel
de verkregen winst in rekentijd in vergelijking met de expliciete referentie-
methode aanzienlijk is, blijken de beide stationaire oplossingen van elkaar te
verschillen. Met de impliciete methode wordt een oplossing tot op machinepre-
cisie verkregen terwijl de convergentie blijft steken als de expliciete methode
wordt gebruikt. De reden voor dit verschil is dat de stationaire oplossing in-
stabiel is. Er blijkt een zwakke fysische instabiliteit in het zog aanwezig te zijn
die niet wordt opgemerkt door de impliciete methode doordat deze methode
een enigszins dissipatief karakter heeft.

In hoofdstuk 5 bespreken we de mogelijkheden van de impliciete methode
voor versnelling met multigrid en parallellisatie. Uit eerder onderzoek is geble-
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ken dat multigrid in combinatie met een expliciete methode voor het oplossen
van het transsone stromingsprobleem erg gevoelig is voor de juiste multigrid in-
stellingen. Daarentegen blijkt de combinatie van multigrid met een impliciete
methode een robuuste smoother op te leveren en wordt convergentieversnelling
verkregen zonder een uitgebreide parameterafstelling. We hebben laten zien
dat met behulp van domeindecompositie een acceptabel parallellisatieniveau
wordt bereikt. Voor sommige domeindecomposities treden er convergentie-
problemen op die samenhangen met de nauwkeurigheid waarmee het lineaire
stelsel iedere pseudotijdstap wordt opgelost op de domeinranden. Door de
nauwkeurigheid te verhogen wordt convergentie van de oplossing verkregen
voor alle mogelijke domeindecomposities.

Daarna wordt in hoofdstuk 6 een simulatie van een tweedimensionale tijds-
afhankelijke schok-grenslaag-interactie stroming uitgevoerd, waarbij we het
tweede orde nauwkeurige Crank-Nicolsonschema voor de tijdsintegratie ge-
bruiken. Iedere tijdstap moet een groot gekoppeld niet-lineair stelsel opge-
lost worden. Hiertoe wordt een pseudotijdsafgeleide gëıntroduceerd zodat met
de impliciete methode uit hoofdstuk 4 en 5 de oplossing in pseudotijd con-
vergeert naar de oplossing op het volgende tijdstip. Omdat er geen externe
tijdsafhankelijke stromingscondities worden voorgeschreven relateren we de
globale fout, veroorzaakt door de tijdsintegratie, aan de globale plaatsdiscreti-
satiefout. We formuleren een aantal nauwkeurigheidscriteria die een verband
leggen tussen de tijdstap, de lokale nauwkeurigheid en de relaxatieparameter.
Simulaties met parameterinstellingen die aan deze criteria voldoen geven vol-
doende nauwkeurige oplossingen. De nauwkeurigheidstijdstap hangt af van
de stromingsgrootheid. Zonder enige vorm van code-optimalisatie wordt een
versnellingsfactor van 9.2 en 3.7 verkregen in vergelijking met de expliciete
referentiemethode voor respectievelijk tijdsafhankelijke en gemiddelde stro-
mingsgrootheden. Voor grote tijdstappen treden convergentieproblemen op
die samenhangen met een gevoelige afhankelijkheid van de relaxatieparame-
ter. Deze parameter lijkt een bifurcatieparameter te zijn overeenkomstig de
bevindingen van Yee en Sweby [100, 101].

Voor een relevante keuze van de numerieke parameters levert de impliciete
methode geen rekentijdwinst op. Om de convergentie in pseudotijd te ver-
snellen passen we multigrid toe. Het blijkt dat geen versnelling verkregen kan
worden. Door middel van een orde van grootte beschouwing wordt duidelijk
dat de tijdsintegratietermen de smoothing-operator domineren. Om voldoende
smoothing te verkrijgen zouden de fluxtermen de smoothing-operator moeten
domineren. Dit wordt bevestigd door een modelstudie waarin criteria voor
de grootte van tijdstap en de relaxatieparameter worden geformuleerd zoda-
nig dat de fluxtermen de smoothing-operator domineren. Door de opgelegde
nauwkeurigheidseis bij de schok-grenslaagstroming is de nauwkeurigheidstijd-
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stap zo klein dat niet aan deze criteria wordt voldaan. Dit verklaart het
negatieve multigridresultaat.

Hoewel de totale smoothingseigenschap van de numerieke methode slecht
is, blijkt er wel enige smoothing in de y-richting te zijn. Daarom stellen we
voor om voor de flux in x-richting een expliciete methode te gebruiken en
voor de flux in y-richting een impliciete methode. Hiervoor hebben we in
hoofdstuk 8 een nieuwe klasse van partieel-impliciete methoden ontwikkeld
die een combinatie zijn van het tweede orde Crank-Nicolsonschema met de
compact-storage Runge-Kuttaschema’s. Het feit dat een numeriek schema
een stationaire oplossing moet kunnen genereren die onafhankelijk is van de
tijdstap is een belangrijke eis naast de traditionele eisen van consistentie en
stabiliteit. Deze eis kan echter niet gecombineerd worden met optimale stabili-
teitseigenschappen van het numerieke schema. Simulaties laten zien dat de eis
van stationariteit het meest stringent is. Door een klein beetje numerieke dis-
sipatie toe te voegen hebben de partieel- impliciete methoden toch geschikte
stabiliteitseigenschappen. Voor grootschalige stromingsproblemen waarin het
geheugen een bottleneck vormt of voor rekenroosters met hoge aspect ratio
verwachten we dat de partieel-impliciete methoden een goed alternatief zijn
voor expliciete of volledig impliciete methoden.

Tenslotte worden in hoofdstuk 9 enkele voorlopige resultaten gepresenteerd
van de dynamische tijdstapbepaling. Hiertoe gebruiken we een aangepaste
POD-analyse. In deze analyse bepalen we het maximale tijdsinterval waarin
een fractie p van de energie bevat is in slechts één ruimtelijke structuur. Dit
interval is een maat voor het tijdsgedrag van de stroming en kan daarom
gebruikt worden als nauwkeurigheidstijdstap. De methode is toegepast op de
tijdsafhankelijke schok-grenslaagstroming. Voor een specifieke waarde van p
resulteert dit in een niet uniforme tijdstap binnen de nauwkeurigheidsgrenzen
bepaald in hoofdstuk 6. Een simulatie met deze tijdreeks resulteert in een
voldoende nauwkeurige oplossing wat de mogelijkheden van de POD-methode
om dynamisch de nauwkeurigheidstijdstap te bepalen illustreert.
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passe heeft gehaald. Tevens wil ik Patrick Strating bedanken voor zijn niet
geringe bijdrage aan hoofdstuk 5 en Wilbert IJzerman voor zijn samenwerking
in de totstandkoming van hoofdstuk 9. Als laatste wil ik Ruud van Damme
en Brian Gilding bedanken voor het feit dat ik altijd bij hun terecht kon met
detaillistische vragen over wiskunde.

Naast de inhoudelijke ondersteuning heb ik de afgelopen vier jaren veel
steun gehad van familie en vrienden. Het zou te ver gaan om iedereen per-
soonlijk te bedanken en ik hoop niet dat de mensen, die ik niet bij name noem,
het gevoel hebben dat hun vriendschap of steun wordt onderschat. Als eerste
wil ik graag mijn ouders, mijn broer, Mirjam en Duco vooral bedanken voor
hun steun in de afgelopen twee jaar. Tevens wil ik Paul en Wijnand bedanken
voor het feit dat ze op het goede moment aanwezig waren. Verder zou ik graag
Robert willen bedanken voor de nodige restauratie-uren. Als laatste noem ik
mij kamergenoot Carlo. We hebben veel plezier gehad de afgelopen jaren op
conferenties en zeker op onze kamer. Er komt een dag dan is het antwoord:....
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Over de schrijver

De auteur van dit proefschrift werd geboren op 14 april 1972 te Leeuwarden.
Hij groeide op in Grouw, en in 1990 deed hij eindexamen VWO aan de Ste-
delijke Scholen Gemeenschap te Leeuwarden. Van 1990 tot 1995 studeerde
hij Toegepaste Wiskunde aan de Universiteit Twente. Tijdens zijn studie liep
hij drie maanden stage bij het Institut Laue Langevin te Grenoble, Frank-
rijk, waarna hij onder supervisie van Prof.dr.ir. R. Martini afstudeerde bij de
vakgroep ADAM (Algebra Discrete wiskunde Analyse en Meetkunde) op het
onderwerp: ’An algorithmic approach to conservation laws’. Van 1995 tot
1999 was hij aangesteld als Assistent in Opleiding aan de Universiteit Twente
onder supervisie van Prof.dr.ir. Zandbergen bij de vakgroep Toegepaste Ana-
lyse. Tijdens deze aanstelling deed hij onderwijservaring op door het geven
van werkcolleges op het gebied van numerieke wiskunde en analyse.
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